EVALUATING THE ROLE OF OMEGA-3 FATTY ACIDS IN DYSLIPIDEMIA: SUCCESS OF ONLINE CME

Jelena Spyropoulos, PhD; Joy Marko, MS, FNP-C, CCMEP, Colleen Healy
Medscape LLC, New York, NY

OBJECTIVE

To determine if an online continuing medical education (CME) intervention could improve the knowledge and competence of primary care physicians (PCPs) and cardiologists related to the role of EPA in the management of dyslipidemia.

METHODS

Clinical trials have demonstrated the effectiveness of omega-3 polyunsaturated fatty acid (omega-3 PUFA) therapy in triglyceride (TG) lowering. Many studies, however, have limited understanding of the effects of EPA and limited experience using EPA to reduce the risk of cardiovascular disease.

The change in correct responses from pre- to post-assessment achieved statistical significance for knowledge and competence metrics related to several clinical themes (P < .05):

1. Effect of omega-3 fatty acids on different lipids (P < .05) and cardiologists related to the role of EPA in dyslipidemia and cardiologists related to the role of EPA in cardioprotective properties of omega-3 fatty acids (P < .05).

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

2. Cardioprotective properties of omega-3 fatty acids (pre-assessment) and knowledge of positive effects of EPA on cardiovascular mortality (P < .05).

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

3. Ability to incorporate EPA into treatment strategies for patients with dyslipidemia (pre-assessment) and ability to address treatment for a patient with elevated TGs and LDL cholesterol.

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

The change in correct responses from pre- to post-assessment achieved statistical significance for knowledge and competence metrics related to several clinical themes (P < .05):

1. Effect of omega-3 fatty acids on different lipids (P < .05) and cardiologists related to the role of EPA in cardioprotective properties of omega-3 fatty acids (P < .05).

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

2. Cardioprotective properties of omega-3 fatty acids (pre-assessment) and knowledge of positive effects of EPA on cardiovascular mortality (P < .05).

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

3. Ability to incorporate EPA into treatment strategies for patients with dyslipidemia (pre-assessment) and ability to address treatment for a patient with elevated TGs and LDL cholesterol.

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

QUESTION: Which of the following most accurately describes a finding of the study?

A. Combined EPA and DHA therapy lowered TG and increased HDL by approximately 25%-30%.
B. A reduction in TG levels is the only documented cardioprotective effect.
C. EPA purified omega-3 fatty acid was more effective than other EPA formulations.
D. Dietary supplements of omega-3 fatty acids were more effective than prescription forms of omega-3.

The change in correct responses from pre- to post-assessment achieved statistical significance for knowledge and competence metrics related to several clinical themes (P < .05):

1. Effect of omega-3 fatty acids on different lipids (P < .05) and cardiologists related to the role of EPA in cardioprotective properties of omega-3 fatty acids (P < .05).

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

2. Cardioprotective properties of omega-3 fatty acids (pre-assessment) and knowledge of positive effects of EPA on cardiovascular mortality (P < .05).

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

3. Ability to incorporate EPA into treatment strategies for patients with dyslipidemia (pre-assessment) and ability to address treatment for a patient with elevated TGs and LDL cholesterol.

Clinical trials have demonstrated the effects of omega-3 fatty acids in reducing TG levels.

Medscape Education

FIGURE 1. Representative Questions – Clinical Theme 1: Effect of Omega-3 Fatty Acids on Different Lipids

FIGURE 2. Representative Questions – Clinical Theme 2: Cardioprotective Properties of Omega-3 Fatty Acids

FIGURE 3. Representative Questions – Clinical Theme 3: Ability to Incorporate EPA Into Treatment Strategies

TABLE 1. CME Activities Included in the Assessment

<table>
<thead>
<tr>
<th>Activity Title</th>
<th>Date Collection Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back to Basics of Dyslipidemia</td>
<td>April 11, 2016 - May 19, 2016</td>
</tr>
<tr>
<td>Dyslipidemia and the Emerging Role of Niacin</td>
<td>Dec 22, 2016 - Jan 10, 2017</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The statistically significant improvements demonstrated by participants in this intervention illustrate that online, curriculum-based CME designed to address underlying practice gaps can improve knowledge and competence of physicians related to management of dyslipidemia.

REFERENCES


ACKNOWLEDGMENTS

This CME-certified activity was supported by an independent educational grant from Amarin. For more information contact Jelena Spyropoulos, PhD: Director of Clinical Strategy, Medscape, LLC at jspyropoulos@medscape.net.