Nedscape

IMPROVING MANAGEMENT OF ACS USING BIOMARKERS: CAN ONLINE CME IMPROVE PERFORMANCE?

JELENA SPYROPOULOS, PHD; KELLY HANLEY Medscape Education, New York, NY

INTRODUCTION

Biomarkers are powerful adjuncts to clinical care for diagnostic and prognostic assessments in acute coronary syndrome (ACS)^{1,2}; however, data show that physicians lack knowledge of practical aspects of using biomarkers in clinical practice.³ In addition, biomarker utilization continues to evolve, with expanded uses, new targets for

assessment, and the introduction of highersensitivity assays. This study's objective was to determine if a curriculum of continuing medical education (CME) activities improved the performance of cardiologists related to the use of biomarkers in the management of ACS.

METHODS

Instructional Design

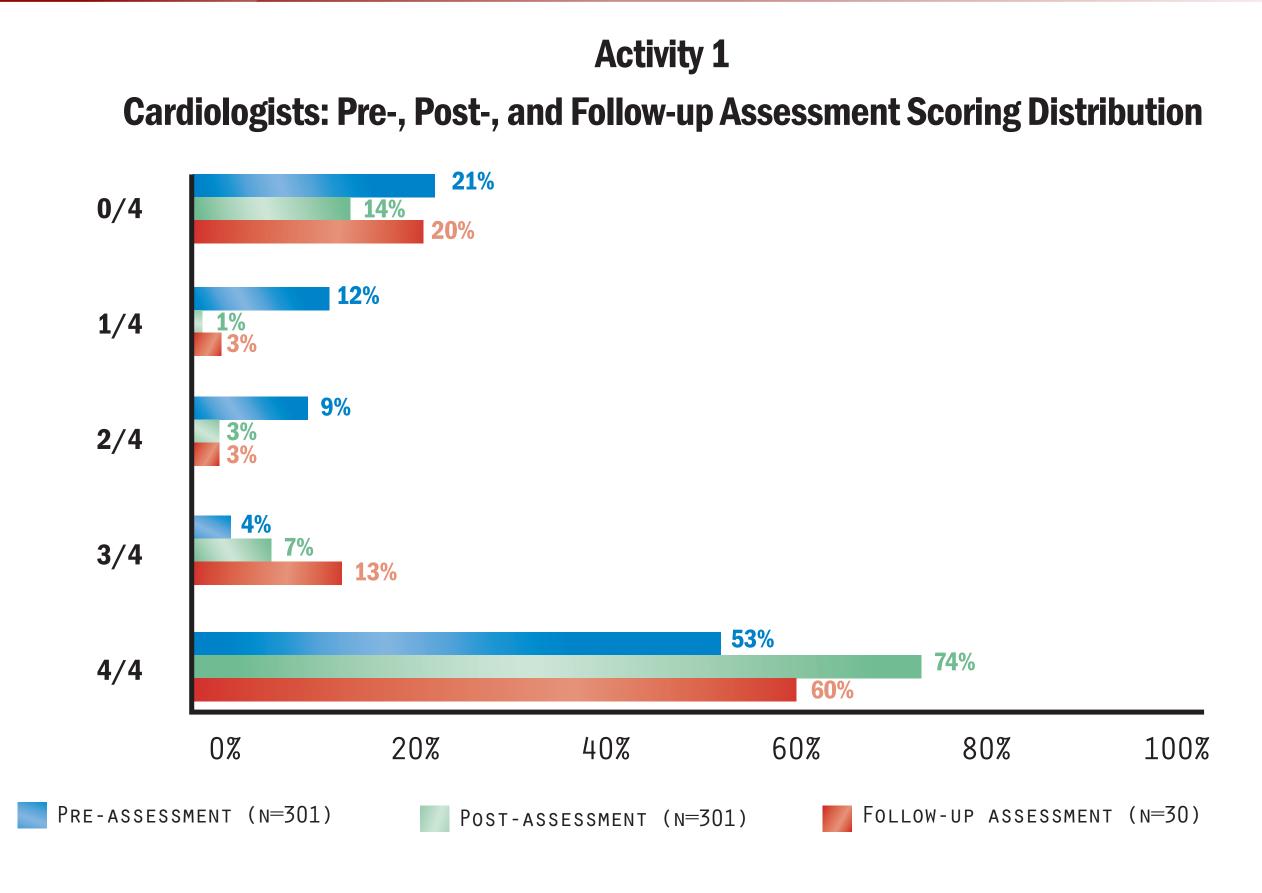
The curriculum consisted of 2 CME activities, including an expert panel discussion⁴ and a text-based review⁵ on the application of biomarkers in ACS. The panel discussion was chosen to provide examples, highlight problem-solving processes, and offer multiple perspectives or interpretations on the expanded applications of cardiac biomarkers. The text-based instructional format was chosen to showcase the voice of a therapeutic expert and provide a comprehensive review of clinical findings and advances. The activities were available on the Medscape Mobile application, ensuring real-time access by the many clinicians who rely on mobile devices for education.

Outcomes Assessment: Performance Linked Learning Assessment

- This study design compared participants' responses to questions before exposure to educational content (preassessment measurement) with the same participants' responses to the same questions placed after the educational content (post-assessment measurement).
- The questions consisted of case-based scenarios and performance-assessment questions as well as a self-efficacy question.

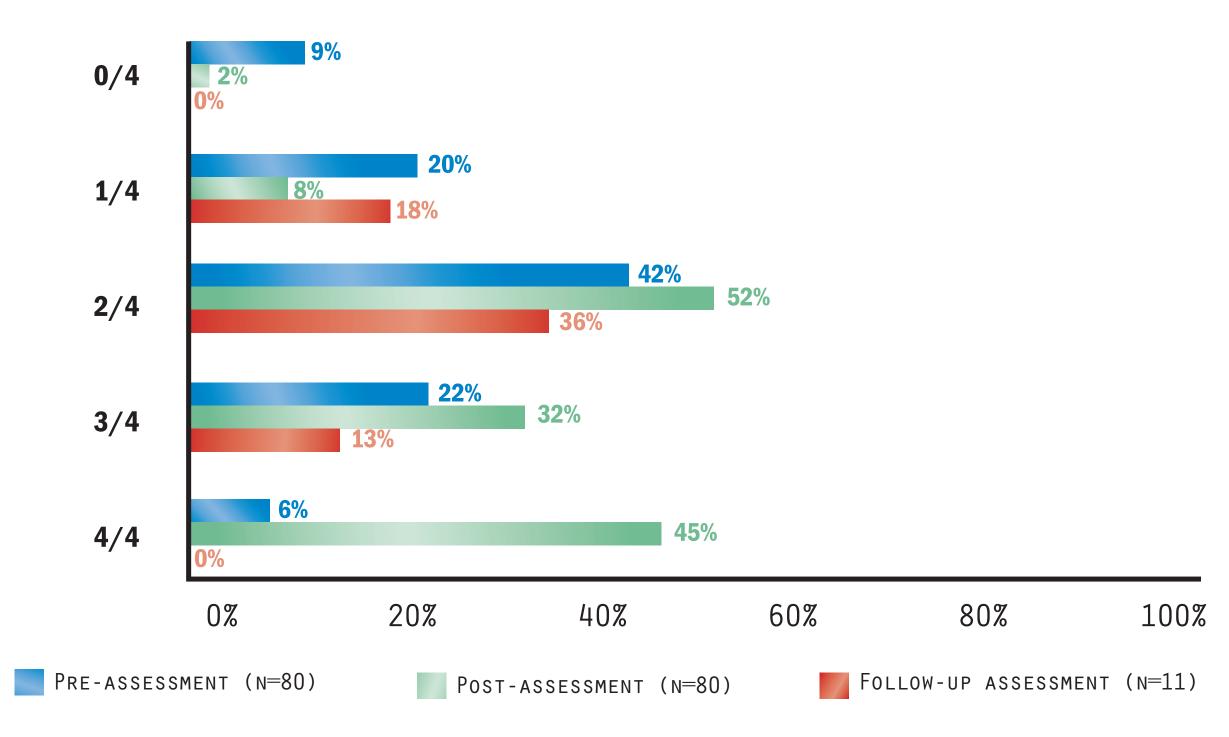
- Linking pre-assessment and postassessment participants allow learners to serve as their own controls. A paired 2-tailed t-test was used to assess whether the mean pre-assessment score was different from the mean post-assessment score.
- Analysis was conducted on an identified audience of cardiologists who completed all of the pre-assessment and postassessment questions during a specified time period for each of the 2 activities. A subanalysis was conducted on a secondary sample of cardiologists who also completed the follow-up assessment, 30 to 60 days post-education.
- McNemar's χ² statistic was used to measure changes in responses to individual questions.
- *P* values were calculated for both t-test and χ^2 statistics to determine significance level (α).
- P values less than .05 are statistically significant.
- Cramer's V was used to calculate the effect size of the intervention. Effect sizes (V) between 0 and 0.25 are large, between 0.25 and 0.5 are moderate, and greater than 0.5 are small.
- Categories of participant responses are defined in Table 1.

table 1	Participant Response Categories	
CATEGORY	DEFINITION	
Improved Learners	Any incorrect response on pre-assessment, correct response on post-assessment	
Reinforced Learners	Correct response on both pre-assessment and post-assessment	
Unaffected Learners	Any incorrect response on post-assessment (with either correct or incorrect response on post-assessment)	


RESULTS

Overall, both CME activities demonstrated significant improvement for cardiologists related to integration of biomarkers into management of patients with ACS (Table 2).

table 2	Summary Activity Data		
ACTIVITY TOPIC	ACTIVITY 1: TROPONIN FOR Clinical Decision Making in ACS	ACTIVITY 2: RELEVANC OF TROPONIN FOR ACS	
N	301	80	
Follow-up data (n)	30	12	
Overall P value	<.001	<.004	
Effect size (V)	0.35 (medium)	0.44 (medium)	


The scoring distribution for each activity indicated improvement in evidence-based choices and skills associated with the learning concepts on post-assessment. (Figure 1)



The education was successful in improving performance of cardiologists related to several clinical themes. (Table 3)

TABLE 3 Analysis of Clinical Themes						
Clinical Theme	N	Average % of Correct Responses (Post-assessment)	Average % of Correct Responses (Pre-assessment)	<i>P</i> value		
Interpretation of biomarker results in order to risk-stratify or assess patients with ACS and determine the appropriate next steps	381	83%	70%	<.001		
Application of biomarkers to identify clinical benefits and to tailor and guide a treatment plan	381	72%	56%	<.001		
Integration of new, universal definition of MI	80 ª	24.5%	23%	NS		

ACS = acute coronary syndrome; MI = myocardial infarction; NS = not significant. ^aResponses based on activity 2 only.

Impact on self-efficacy was determined using a Likert scale of 1 to 7, with 1 being easy or confident and 7 being difficult or not confident, against a key learning concept. There was no significant improvement in the ease of/confidence in decision making surrounding the related patient management decision, but in each case, there was an increase in the number of cardiologists who self-identified as it being easier or as having more confidence in their decision following exposure to the education. (Figure 2)

CONCLUSIONS

The statistically significant improvements observed in this online CME curriculum demonstrate the benefits of incorporating adult learning principles in educational design to promote effective knowledge transfer and performance change.

Recommendations for Future Education

This assessment of cardiologists' performance identified education gaps that support the need to develop additional CME activities on the application of biomarkers in ACS management:

- The use of cardiac troponin (cTnT) to differentiate between a non-ST-segment elevation myocardial infarction (NSTEMI) and an ST-segment elevation myocardial infarction (STEMI)
- The use of cTnT to rule in or rule out an acute MI and to support clinical decision making
- Differences between MI type 1 and 2
- Troponin as the most practical and useful way to interpret the universal definition of MI

Acknowledgements

The educational intervention and outcomes measurement were funded through an independen educational grant from Roche **Diagnostics.**

For more information, contact Jelena Spyropoulos, Director of Educational Strategy, Medscape LLC, at jspyropoulos@medscape.

References

1. Dauber MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag. 2010;6:691-699.

- 2. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020-2035.
- 3. Medscape Education. Performance-Linked Learning Assessment: Clinical Advances in Cardiac Biomarkers. 2014.
- 4. Cannon CP, Morrow DA, Rao SV, Ohman EM, Troponin: its relevance in ACS. Medscape **Education Cardiology. December** 30, 2013. http://www.medscape. org/viewarticle/818306 Accessed April 10, 2015.
- 5. Cannon, CP, Vardi M. The usefulness of troponin in clinical decision making in acute coronary syndrome. Medscape Education Cardiology. August 16, 2013. http://www.medscape. org/viewarticle/809379 Accessed April 10, 2015.

Scan here to view this poster online.