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1 WEB APPENDIX 1 (INTRODUCTION) 
This supplementary technical appendix describes the mathematical model structure, parameterization, 
and statistical analysis of the accompanying paper in further detail. 

1.1  Model Framework 
The mathematical models for HIV transmission dynamics presented in this study are agent-based 

microsimulation models in which uniquely identifiable sexual partnership dyads were simulated and 

tracked over time. This partnership structure is represented through the use of separable temporal 
exponential-family random graph models (STERGMs), described in Web Appendix 2. On top of this 

dynamic network simulation, the larger epidemic model represents demography (entries, exits, and 
aging), interhost epidemiology (disease transmission), intrahost epidemiology (disease progression), and 

clinical epidemiology (disease diagnosis and treatment). Individual attributes related to these processes 
are stored and updated in discrete time over the course of each epidemic simulation. 

The modeling methods presented here depend upon and extend the EpiModel software to incorporate 

HIV-specific epidemiology. The HIV extensions for men who have sex with men (MSM) were originally 
developed by Goodreau et al. for use in prior modeling studies of MSM in the United States and South 

America,1–3 and subsequently used for a model for HIV preexposure prophylaxis (PrEP) among US 
MSM.4–7 

1.2 Model Software 
The models in this study were programmed in the R and C++ software languages using the EpiModel 

[http://epimodel.org/] software platform for epidemic modeling. EpiModel was developed by the authors 

for simulating complex network-based mathematical models of infectious diseases, with a primary focus 

on HIV and other sexually transmitted infections (STIs). EpiModel depends on Statnet 

[http://statnet.org/], a suite of software in R for the representation, visualization, and statistical analysis 
of complex network data.8 

EpiModel allows for a modular expansion of its built-in modeling tools to address novel research 

questions. For this current research study, we have developed extension modules into an add-on 
software package to EpiModel called EpiModelHIV. This open-source software is available for download, 
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along with the scripts used in the execution of these models. The tools and scripts to run these models 

are contained in two GitHub software repositories: 

• [http://github.com/statnet/EpiModelHIV] contains the general extension software package. Installing 

this using the instructions listed at the repository homepage will also load in EpiModel and the other 

dependencies. We use a branching software architecture such that the version of the software 
associated with this research project is prep-race. 

• [http://github.com/EpiModel/PrEPdisparities] contains the scripts to execute the mathematical 

models and to run the statistical analyses provided in the manuscript. 

1.3 Core Model Specifications 

With a starting network size of 10,000 MSM aged 18–40, 50% were initialized in each race, a ratio that 
approximates the distribution for the Atlanta area and provides analytical clarity.9 Further details on the 

demography (race and age) are provided in Web Appendix 5. The time unit used throughout the 
simulations was one week. Thus, all rate-based parameters listed below are to be interpreted as the rate 

per week and all duration-based estimates are to be interpreted as the duration in weeks, unless 
otherwise noted. 

 

2 WEB APPENDIX 2 (BEHAVIORAL DATA SOURCES) 
The various behavioral modules were parameterized using two studies of HIV/STI disparities in Black 
and White non-Hispanic MSM, conducted from 2010-2014 in Atlanta, GA. The Involvement Study was a 

prospective HIV incidence cohort of 803 MSM and the MAN Project was a cross-sectional chain-referral 

sexual networks study of 314 MSM. Both samples were recruited contemporaneously using venue-time-
space sampling, using a modified frame from the 2008 MSM round of the National HIV Behavioral 

Surveillance system. Study participants completed common self-administered computer-based 
questionnaire modules that assessed demographics, prevention behaviors, and a detailed dyadic 

(partnership) section that collected demographic, behavioral, and structural (partnership duration and 
sequence) data. 

We first created a combined ego dataset of Black and White non-Hispanic MSM in Atlanta, ages 18-40 

from the baseline visit of Involvement (n=803) and network seed-level respondents from the MAN Project 
(n=196), for a total of 999 egos. We then created a combined dyadic dataset for partnerships among 

those egos, which included up to 5 most recent sex partners in the previous 6 months per ego for 
Involvement or 10 partners in 12 months per ego for MAN Project. Only Black and White non-Hispanic 

male partners were included, and dyads were limited to those in which AI occurred at least once (at last 
sex or during the 6- or 12-month interval), resulting in a total of 2,626 dyads. We refer to this as the 

“combined dyadic dataset” below. 
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3 WEB APPENDIX 3 (SEXUAL NETWORKS) 
We model networks of three interacting types of sexual relations: main partnerships, casual (but 

persistent) partnerships, and one-time AI contacts. We first describe the methods conceptually, 
including the parameters used to guide the model and their derivation (Web Appendix 3.1), and then 

present the formal statistical modeling methods (Web Appendix 3.2). Consistent with our parameter 
derivations, all relationships are defined as those in which AI is expected to occur at least once. 

3.1  Conceptual Representation of Sexual Networks 
Our modeling methods aim to preserve certain features of the cross-sectional and dynamic network 

structure as reported in behavioral studies, while also allowing for mean relational durations to be 
targeted to those reported for different groups and relational types. Our methods do so all within the 

context of changing population size (due to births, deaths, arrivals and departures from the population) 
and changing composition by attributes such as age. 

The network features that we aim to preserve are as follows, with the parameters for each described in 

turn: 

• The proportion of men (by race) in any given combination of main and casual partnerships (for 

example, in 1 main and 0 casual partnerships) at any time point. 

• The expected number of one-time contacts per time step had by men in each main-casual 

combination (by race). 

• Variation across men in the numbers of one-time contacts. 

• Race mixing within each of the different relational types. 

• Age mixing within each of the different relational types, by the races of the two men involved. 

• Prohibitions against partnering for two men who are both exclusively insertive or exclusively 

receptive. 

3.1.1  Number of Ongoing Main and Casual Partnerships  

Ongoing partnerships (whether main or casual) were defined from the combined dyadic dataset as those 
in which sex had already occurred more than once, and in which the respondent anticipated having sex 

again. Within this set, partnerships were defined as main if the respondent indicated that it was someone 

they “felt committed to above all others” or that they considered the person their “primary sex partner”; 
if neither of these conditions held, the partner was defined as casual. This yielded the following 

proportions of men with a given number of main and casual relationships at a point in time (i.e. the 
expected momentary degree distribution) shown in Web Table 1. 

  



 6 

Web Table 1. Degree Distribution in Main and Casual Partnerships. 

 Black  White 

 0 Casual 1 Casual 2 Casual 

 

0 Casual 1 Casual 2 Casual 

0 Main 50.6% 15.1% 5.3% 43.5% 18.4% 9.5% 

1 Main 20.7% 6.1% 2.2% 23.3% 3.3% 2.0% 

Note that this implies a slightly higher rate of relational concurrency within these two types of 
relationships for White men (9.5% + 3.3% + 2.0% = 14.8%) than for Black men (5.3% + 6.1% + 2.2% = 

13.6%). It also implies a slightly higher proportion of Black men in a main partnership (29.0%) than White 

men (28.6%), but a higher average number of casual partners for White men (weighted average = 0.447 
casual partnerships per person) than Black men (0.362). 

3.1.2  Expected Number of One-Time AI Contacts, by Main/Casual Degree 
Respondents in the combined dyadic dataset were asked whether they had had sex with each partner 

once or more than once; the former response led to the contact being defined as one-time. These 
contacts cannot be analyzed in terms of momentary degree distributions, since none are ongoing at the 

point of interview, by definition. Instead, we turn the observed frequencies into expected rates of one-
time contacts per time step for men under different conditions. One of the sources of heterogeneity in 

men’s propensity for one-time AI contacts is their current relationship status. The expected numbers are 
given by Web Table 2. 

Web Table 2. One-Time AI Contact Rates. 

 Black  White 

 0 Casual 1 Casual 2 Casual 

 

0 Casual 1 Casual 2 Casual 

0 Main 0.073 0.091 0.080 0.057 0.084 0.091 

1 Main 0.055 0.052 0.052 0.057 0.058 0.058 

3.1.3 Heterogeneity in the One-Time Contact Rate  
In addition to differences by relational status, men also have underlying fixed heterogeneities in their 

propensity to engage in one-time AI. The distribution of one-time contacts was divided into quintiles, 
within which the expected values of one-time AI per time step are provided in Web Table 3. 
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Web Table 3. Heterogeneity in Contact Rates. 

Quintile Black White 

Lowest quintile 0.000 0.000 

Second quintile 0.010 0.003 

Third quintile 0.039 0.036 

Fourth quintile 0.074 0.068 

Highest quintile 0.212 0.231 

Men are assigned a quintile upon entry into the population, which remains fixed. Any individual man’s 
propensity for AI is determined as a combination of their quintile and their current main/casual 
partnership counts. Our statistical methods (described below) translate both propensities into 

conditional log-odds, allowing for their combination. Note that the means of the columns in the quintile 
table equal the means of the values in Web Appendix 3.1.2 weighted by the proportions in Web 

Appendix 3.1.1. These reflect the overall expected value across all men within each race for one-time AI 
acts per time step, which are nearly identical to each other (0.0670 for Black MSM, 0.0676 for White 

MSM). 

3.1.4  Race Mixing 
Respondents reported on their perception of the race and ethnicity (Hispanic/non-Hispanic) for each 
partner. Since this model is limited to young Black and White MSM, we calculated our race mixing 

proportions based on contacts reported within these two groups. Limiting to these, the self-reports of 

relations within race are shown in Web Table 4. 

Web Table 4. Proportion of Same-Race Partnerships. 

 Black White 

Main partnerships 94.8% 91.5% 

Casual partnerships 90.2% 85.1% 

One-time contacts 90.9% 89.4% 

These numbers must balance in our model; that is, the reports by Black men and by White men each 
imply a specific expected number of cross-race relationships, given the overall numbers of relationships 

for each group. Although the implied numbers are similar, they are not exactly equal. To reconcile this, 
we calculated the expected cross-race relationships given each number above and all of the other 

relational statistics in the model, and took the midpoint of the two values. These equaled 93%, 88%, and 
90%, for main, casual and one-time, respectively. 
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3.1.5  Age Mixing 

Respondents also reported on the estimated age of each partner. We model age mixing within a given 
relational type and race combination using a single parameter for each, the expected mean difference in 

square root of the ages of men in a relationship, consistent with previous work.1,3,10 For instance, a 

relationship between a 23-year-old and a 28-year-old would represent !√23 − √28! = 0.496. These 

parameters are shown in Web Table 5. 

Web Table 5. Mean Difference in Ages by Partnership Type. 

 B-B Dyads B-W Dyads W-W Dyads 

Main partnerships 0.417 0.454 0.520 

Casual partnerships 0.498 0.629 0.632 

One-time contacts 0.456 0.585 0.590 

3.1.6  Mixing by Sexual Role 

We assign men a fixed sexual role preference (exclusively insertive, exclusively receptive, versatile). The 

model then includes an absolute prohibition, such that two exclusively insertive men cannot partner, nor 
can two exclusively receptive men. Men’s roles at last sex for each of the last 5 (Involvement) or 10 

(MAN Project) partners were aggregated; those who had engaged in one role across all of those acts 

were deemed to be exclusively receptive or insertive, and those who had engaged in at least one act of 
each were deemed to be versatile. These parameters are shown in Web Table 6. 

Web Table 6. Mixing by Sexual Role. 

 Black White 

Exclusively insertive 24.2% 22.8% 

Versatile 43.7% 54.4% 

Exclusively receptive 32.1% 22.8% 

3.1.7. Partnership Durations 

We model relational dissolution as a heterogenous, geometrically distributed process with unique 

parameters for each relational type and race combination. This distribution for relational durations 
implies a “memoryless process, which is a common assumption within ordinary differential equation 

modeling. Although this assumption implies that the rate of dissolution does not depend on the length of 

the partnership, the overall exponential shape of the dissolution matches reasonably well to empirical 
data on relational durations. The fit is improved considerably when the partnership types are stratified, 

as we do here, by multiple attributes, implying a hypergeometric distribution. Our principal stratification 
here is partnership type, where the key difference between types is the average duration. Once one-time 
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contacts are removed, and longer-duration main partnerships are separated from shorter-term causal 

partnerships, the hypergeometric distribution fits the empirical data on partnership durations well.  

As detailed in previous work,1 for memoryless processes, the expected age of an extant relationship at 
any moment in time matches the expected uncensored duration of relationships, given the balancing 

effects of right-censoring and length bias for this distribution.  

To derive our values, we take the median of the observed distribution and then calculate the mean for 
the exponential distribution with that median. Duration was calculated as the difference between first 

and last sex date for each dyad the ego reported sex with more than once in the interval. The resulting 

expected relational durations are provided in Web Table 7. 

Web Table 7. Duration of Partnerships by Race Combination. 

 B-B Dyads B-W Dyads W-W Dyads 

Main partnerships 348 days 372 days 555 days 

Casual partnerships 131 days 286 days 144 days 

3.2  Statistical Representation of Sexual Networks 

Exponential-family random graph models (ERGMs) and their dynamic extension separable temporal 
ERGMs (STERGMs) provide a foundation for statistically principled simulation of local and global 

network structure given a set of target statistics from empirical data. Main and casual relationships were 
modeled using STERGMs,11 since they persist for multiple time steps. One-time contacts, on the other 

hand, were modeled using cross-sectional ERGMs.12 Formally, our statistical models for relational 
dynamics can be represented as five equations for the conditional log odds (logits) of relational 

formation and persistence at time t (for main and casual relationships) or for relational existence at time t 

(for one-time contacts): 

𝑙𝑜𝑔𝑖𝑡 ,𝑃.𝑌01,3 = 1!	𝑌01,378 = 0, 𝑌01,3: ;<  = 𝜃>?
@𝜕.𝑔>? (𝑦); Main partnership formation 

𝑙𝑜𝑔𝑖𝑡 ,𝑃.𝑌01,3 = 1!	𝑌01,378 = 0, 𝑌01,3: ;<  = 𝜃E?
@𝜕.𝑔E?(𝑦); Casual partnership formation 

𝑙𝑜𝑔𝑖𝑡 ,𝑃.𝑌01,3 = 1!	𝑌01,378 = 1, 𝑌01,3: ;<  = 𝜃>7@𝜕.𝑔>7 (𝑦); Main partnership persistence 

𝑙𝑜𝑔𝑖𝑡 ,𝑃.𝑌01,3 = 1!	𝑌01,378 = 1, 𝑌01,3: ;<  = 𝜃E7@𝜕.𝑔E7(𝑦); Casual partnership persistence 

𝑙𝑜𝑔𝑖𝑡 ,𝑃.𝑌01,3 = 1!	𝑌01,3: ;<  = 𝜃F@𝜕.𝑔F(𝑦); One-time contact existence 

where:  

• 𝑌01,3 = the relational status of persons i and j at time t (1 = in relationship/contact, 0 = not) 

• 𝑌01,3:  = the network complement of i,j at time t, i.e. all relations in the network other than i,j 

• 𝑔(𝑦) = vector of network statistics in each model  
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• 𝜃 = vector of parameters in the model 

For 𝑔(𝑦) and 𝜃, the superscript distinguishes the formation model (+), persistence model (-) and 

existence models (neither). The subscript indicates the main (m), casual (c) and one-time (o) models. 

The recursive dependence among the relationships renders the model impossible to evaluate using 
standard techniques; we use MCMC in order to obtain the maximum likelihood estimates for the 𝜽 

vectors given the 𝒈(𝒚) vectors. 

Specific model statistics are listed below. Together these sets allow us to retain all of the network 

features listed in Web Appendix 3.1. it is important to note that, although the statistics are expressed 
here in terms of number of relationships and enter into the estimation model in this form, the simulation 

model is then parametrized using the resulting 𝜃 coefficients. This means that, as population size and 

composition changes, it is not the absolute number of relationships of different kinds that will be 
preserved, but the relative numbers (e.g. the mean number of relationships per person). Similar 

conversions hold for the other statistics (e.g. the mean age difference per relationship is preserved, not 
the sum across all relationships). 

Main partner formation model statistics: gK? (y) vector: 

• 𝑔>8? (𝑦) = number of main partnerships 

• 𝑔>M? (𝑦) = number of Black-White main partnerships 

• 𝑔>N? (𝑦) = number of White-White main partnerships 

• 𝑔>O? (𝑦) = number of main partnerships for Black men with 1 casual partner 

• 𝑔>P? (𝑦) = number of main partnerships for Black men with 2 casual partners 

• 𝑔>Q? (𝑦) = number of main partnerships for White men with 1 casual partner 

• 𝑔>R? (𝑦) = number of main partnerships for White men with 2 casual partners 

• 𝑔>S? (𝑦) = sum of the absolute difference in the square root of partners’ ages across BB main 

partnerships 

• 𝑔>T? (𝑦) = sum of the absolute difference in the square root of partners’ ages across BW main 

partnerships 

• 𝑔>8U? (𝑦) = sum of the absolute difference in the square root of partners’ ages across WW main 

partnerships 

The main partner formation model also includes three constraints on the sample space: networks are 
prohibited unless they contain no edges between two men who are both exclusively insertive; no edges 

between two men who are both exclusively receptive; and no men with more than 1 main partner 
simultaneously 
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Main partner persistence model terms: gK7 (y) vector: 

• 𝑔>87 (𝑦) = number of main partnerships 

• 𝑔>M7 (𝑦) = number of Black-White main partnerships 

• 𝑔>N7 (𝑦) = number of White-White main partnerships 

Casual partner formation model terms: gV?(y) vector: 

• 𝑔E8? (𝑦) = number of casual partnerships 

• 𝑔EM? (𝑦) = number of Black-White casual partnerships 

• 𝑔EN? (𝑦) = number of White-White casual partnerships 

• 𝑔EO? (𝑦) = number of casual partnerships for Black men with 1 main partner 

• 𝑔EP? (𝑦) = number of casual partnerships for White men with 1 main partner 

• 𝑔EQ? (𝑦) = number of Black men with 2 casual partners 

• 𝑔ER? (𝑦) = number of White men with 2 casual partners 

• 𝑔ES? (𝑦) = sum of the absolute difference in the square root of partners’ ages across BB casual 

partnerships 

• 𝑔ET? (𝑦) = sum of the absolute difference in the square root of partners’ ages across BW casual 

partnerships 

• 𝑔E8U? (𝑦) = sum of the absolute difference in the square root of partners’ ages across WW casual 

partnerships 

The casual partner formation model also includes three constraints on the sample space: networks are 
prohibited unless they contain no edges between two men who are both exclusively insertive; no edges 

between two men who are both exclusively receptive; and no men with more than 2 casual partners 
simultaneously 

Casual partner persistence model terms:	gV7(y) vector: 

• 𝑔E87 (𝑦) = number of casual partnerships 

• 𝑔EM7 (𝑦) = number of Black-White casual partnerships 

• 𝑔EN7 (𝑦) = number of White-White casual partnerships 

One-time contact existence model terms:	gW(y) vector: 

• 𝑔F8(𝑦) = number of one-time contacts 

• 𝑔FM(𝑦) = total # of one-time contacts for Black men with 0 main and 1 casual partnership 

• 𝑔FN(𝑦) = total # of one-time contacts for Black men with 0 main and 2 casual partnerships 

• 𝑔FO(𝑦) = total # of one-time contacts for Black men with 1 main and 0 casual partnerships 

• 𝑔FP(𝑦) = total # of one-time contacts for Black men with 1 main and 1 casual partnership 

• 𝑔FQ(𝑦) = total # of one-time contacts for Black men with 1 main and 2 casual partnerships 

• 𝑔FR(𝑦) = total # of one-time contacts for White men with 0 main and 0 casual partnerships 
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• 𝑔FS(𝑦) = total # of one-time contacts for White men with 0 main and 1 casual partnership 

• 𝑔FT(𝑦) = total # of one-time contacts for White men with 0 main and 2 casual partnerships 

• 𝑔F8U(𝑦) = total # of one-time contacts for White men with 1 main and 0 casual partnerships 

• 𝑔F88(𝑦) = total # of one-time contacts for White men with 1 main and 1 casual partnership 

• 𝑔F8M(𝑦) = total # of one-time contacts for White men with 1 main and 2 casual partnerships 

• 𝑔F8N(𝑦) = total # of one-time contacts for Black men in risk quintile 1 

• 𝑔F8O(𝑦) = total # of one-time contacts for Black men in risk quintile 2 

• 𝑔F8P(𝑦) = total # of one-time contacts for Black men in risk quintile 4 

• 𝑔F8Q(𝑦) = total # of one-time contacts for Black men in risk quintile 5 

• 𝑔F8R(𝑦) = total # of one-time contacts for White men in risk quintile 1 

• 𝑔F8S(𝑦) = total # of one-time contacts for White men in risk quintile 2 

• 𝑔F8T(𝑦) = total # of one-time contacts for White men in risk quintile 4 

• 𝑔FMU(𝑦) = total # of one-time contacts for White men in risk quintile 5 

• 𝑔FM8(𝑦) = total # of race-homophilous one-time contacts 

• 𝑔FMM(𝑦)= sum of the absolute difference in the square root of partners’ ages across BB one-time 

contacts 

• 𝑔FMN(𝑦)= sum of the absolute difference in the square root of partners’ ages across BW one-time 

contacts 

• 𝑔FMO(𝑦)= sum of the absolute difference in the square root of partners’ ages across WW one-

time contacts 

The one-time existence model also includes two constraints on the sample space: networks are 
prohibited unless they contain no edges between two men who are both exclusively insertive; and no 

edges between two men who are both exclusively receptive. 

Our method of converting the statistics laid out in Web Appendix 3.1 into our fully specified network 

models consists of the following steps: 

1. Construct a cross-sectional network of 10,000 men with no relationships 
2. Assign men sexual roles based on prevalences listed in Web Appendix 3.1.6, as well as one-

time risk quintiles (20% of the men in each race per quintile) 
3. Calculate the target statistics (i.e., the expected count of each statistic at any given moment in 

time) associated with the terms in the formation model (for the main and casual partnerships) 
and in the existence model (for one-time contacts). 

4. Assign each node a place-holder main and casual degree (number of on-going partnerships) that 
is consistent with the race-specific matrices, and store these numbers as a nodal attribute. 

(Note: this does not actually require individuals to be paired up into the partnerships represented 

by those degrees). 



 13 

5. For the main and casual networks, use the mean relational durations by race combination to 

calculate the parameters of the persistence model, using closed-form solutions, given that the 
models are dyadic-independent (each relationship’s persistence probability is independent of all 

others). 
6. For the main and casual networks, estimate the coefficients for the formation model that 

represent the maximum likelihood estimates for the expected cross-sectional network structure. 
7. For the one-off network, estimate the coefficients for the existence model that represent the 

maximum likelihood estimates for the expected cross-sectional network structure. 

Steps 5-7 occur within the Statnet software, and use the ERGM and STERGM methods therein. They are 
made most efficient by the use of an approximation in Step 6.13 During the subsequent model simulation, 
we use the method of Krivitsky et al.14 to adjust the coefficient for the first term in each model at each 

time step, in order to preserve the same expected mean degree (relationships per person) over time in 

the face of changing network size and nodal composition. At all stages of the project, simulated 
partnership networks were checked to ensure that they indeed retained the expected cross-sectional 

structure and relational durations throughout the simulations.  

 

4 WEB APPENDIX 4 (BEHAVIOR WITHIN SEXUAL PARTNERSHIPS) 
We model four phenomena consecutively within relationships at each time step: HIV+ status disclosure, 

number of anal sex acts, condom use per sex act, and sexual role per sex act. We model these only 
within the relationships in our network that are HIV-discordant (whether diagnosed or not), given that 

only they may lead to potential transmissions.  

4.1  Disclosure 

We model the process by which someone who knows he is HIV-positive discloses this fact to partners of 
all types using parameters in Web Table 8. Disclosure affects subsequent decision-making around 

condom use. We do not explicitly model other forms of serostatus discussion, since our source data do 
not include these all; our behavioral estimates in the absence of HIV+ disclosure marginalize over those 

cases in which men disclose as concordant negative and do not discuss at all. Disclosure may occur at 

the point of a relation commencing (if HIV+ status is already known) or it may occur at the point of 
diagnosis, in the case of on-going relationships. In the former case, disclosure of HIV+ status was 

determined from the combined dyadic dataset using the HIV status of the respondent and their response 
to the question, “Did you and this partner share both of your HIV statuses before you first had sex?” In 

the latter case, we did not have data and assumed it to be universal. 
  



 14 

Web Table 8. HIV Status Disclosure Parameters. 

Probability of Disclosure of HIV+ Status Black White 

   to new main partner at outset of relationship 0.685 0.889 

   to new casual partner at outset of relationship 0.527 0.828 

   to one-time contact 0.445 0.691 

   to ongoing partner if diagnosis occurs during relationship 1.000 1.000 

4.2  Number of AI Acts 

The number of anal sex acts per week for each ongoing relationship is determined from a Poisson draw, 

with mean specific to the relational type and race combination of the dyad. For one-time contacts, the 
number is set deterministically to 1 for the time step in which it occurs. For main and casual 

partnerships, we used the frequency of AI in those partnerships as a model calibration parameter that 

was allowed to vary by race. Therefore, there were six parameters in total: main act frequency among 
black-black partnerships, black-white partnerships, and white-white partnerships; and casual act 

frequency among black-black partnerships, black-white partnerships, and white-white partnerships. To 
calibrate the model, we assumed a uniform prior distribution informed by the empirical 95% confidence 

intervals of the point estimates for each weekly rate. The bounds of the distributions are shown in Web 
Table 9. 

Web Table 9. Priors for AI Acts per Week. 

AI Acts/Week/Partnership B-B Dyads B-W Dyads W-W Dyads 

Main partnerships 1.01–2.39 1.00–2.08 1.09–1.69 

Casual partnerships 0.64–1.52 0.63–1.32 0.69–1.08 

After model calibration (statistical details in Web Appendix 12), the point estimates for the posterior 
distributions that were selected and used for the primary model are shown in Web Table 10. 

Web Table 10. Posterior Point Estimates for AI Acts per Week. 

AI Acts/Week/Partnership B-B Dyads B-W Dyads W-W Dyads 

Main partnerships 2.02 1.54 1.18 

Casual partnerships 1.28 0.98 0.75 

These rates were calculated based on the two Atlanta studies, derived from questions asking the 
number of coital acts per partnership during the recall periods.15,16 These were then rescaled from the 
length of the recall period into the weekly rates listed in the table above. 
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4.3  Condom Use 
We conducted logistic regression to identify the main predictors of condom use within partnerships in 
our data. Respondents were asked if they had had unprotected anal sex with each partner during the 

recall periods. Predictors included the race combination of the men in the relationship, the type of 

relationship, the HIV diagnosis status of the HIV+ partner (i.e. whether or not he himself knew that he 
was HIV+), and the disclosure status of the HIV+ partner (whether he had told his partner he was HIV+). 

Predictors that dropped out of the model included sexual position and perceived monogamy of the 
partnership.  

In contrast to previous models, we added three new features of condom use within this study that 
impacted the overall simulation of condoms by the target population. First, we also modeled persistent 

condom use for both causal partnerships and one-time contacts, which depended on empirical data 

showing no condomless acts over the course of that partnership. The per-act probability of condom use 
for those two partnership types, therefore, is conditional on being outside the group that always uses 

condoms. For main partnerships, we assumed no persistent condom use. Second, for all partnership 
types, we explicitly modeled condom failure or breakage stratified by race. This accounts for the 

observations that condom failure rates may be 1–4 times higher for black MSM compared to white 
MSM.17 Third, similar to AI frequency, we also modeled the probability of condom use and the rates of 

condom failure as calibration parameters given the sensitivity in reporting condomless sex in behavioral 
surveys and general uncertainty in measurement of these phenomena.  

For persistent condom use, 21.6% always used condoms within casual partnerships and 32.6% always 

used condoms within one-time contacts. We assumed a correlation in being a persistent condom user 
across casual and one-time contacts with a correlation coefficient of 50%. 

For main partnerships, conditional on having anal intercourse, the probabilities were converted to log 
odds, with coefficients defined by race/partnership types as logit(P(condom use|anal intercourse). For 

casual partnerships and one-time contacts, these outcomes were also conditional on not being a 
consistent condom user, with log odds coefficients also defined by race/partnership types as 

logit(P(condom use|anal intercourse, non-persistent condom use). For the prior distributions for these 9 

coefficients were informed by the empirical 95% confidence intervals around the mean estimates 
translated into uniform distributions. Those prior distributions, therefore, are shown in Web Table 11. 
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Web Table 11. Priors for Logistic Model Coefficients for Condom Use. 

 B-B Dyads B-W Dyads W-W Dyads 

Main partnership -2.12, -1.03 -1.46, -1.20 -1.46, -0.41 

Casual partnership -1.89, -0.73 -1.19, -0.91 -1.19, -0.02 

One-time contact -1.83, -0.67 -1.13, -0.86 -1.14, 0.05 

The final selected point estimates from the posterior distribution after model calibration are provided in 
Web Table 12. 

Web Table 12. Posterior Point Estimates for Logistic Model Coefficients for Condom Use. 

 B-B Dyads B-W Dyads W-W Dyads 

Main partnership -1.74 -1.32 -0.68 

Casual partnership -1.48 -1.04 -0.34 

One-time contact -1.44 -0.99 -0.27 

Again, the casual/one-time coefficients were conditional on not being a persistent condom user, while 
the main partnership coefficients were not. Condom failure or misuse translated into a reduction in the 
per-act efficacy of condoms in the prevention of HIV and STIs, not in the rate of condom use itself. 

Therefore, we describe this feature in Web Appendix 8 on interhost epidemiology. 

For HIV-discordant partnerships, the reference category is the case in which the HIV+ man is 
undiagnosed, hence the relatively low values of condom use. Modifiers for these logit coefficients for 

discordant partnerships are shown in Web Table 13. 

Web Table 13. Logistic Model Coefficients for Condom Use Modifiers. 

Condition Coefficient 

HIV+ diagnosis 0.67 

HIV+ status disclosure 0.85 

Together, these values, in combination with the frequencies with which AI occurs in all of the different 
types of situations, implies an overall rate of condom use average across all acts of approximately 50%. 

4.4  Sexual Role 

Men are assigned an individual sexual role preference (exclusively insertive, exclusively receptive, or 
versatile) as described in Web Appendix 3.1.6. Relationships between two exclusively insertive or two 

exclusively receptive men are prohibited via the ERGM and STERGM models. Versatile men are further 
assigned an insertivity preference drawn from a uniform distribution between 0 and 1. When two 
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versatile men are determined to have an AI act, their sexual positions must be determined (all other 

combinations have only one feasible combination). One option is for men to engage in intra-event 
versatility (IEV; i.e. both engage in insertive and receptive AI during the act). The probability of this is 

specific to the race combination of the men (Black-Black = 42%, Black-White = 56%, White-White = 
49%), and is derived from the partner-specific role data described in Web Appendix 3.1.6. If IEV does 

not occur, then each man’s probability of being the insertive partner equals his insertivity quotient 
divided by the sum of the two men’s insertivity quotients. 

 

5 WEB APPENDIX 5 (DEMOGRAPHY) 
In this model, there are three demographic processes: entries, exits, and aging. Entries and exits are 

conceptualized as flows to and from the sexually active population of interest: MSM aged 18 to 40 years 
old. Entry into this population represents the time at which persons become at risk of infection via male-

to-male sexual intercourse, and we model these flows as starting at an age after birth (age 18) and 
ending at an age potentially before death (age 40). 

5.1 Entry at Sexual Onset 
All persons enter the network at age 18, which was the lower age boundary of our two main source 

studies. The number of new entries at each time step is based on a fixed rate (3 per 10,000 persons per 
weekly time step) that keeps the overall network size in a stable state over the time series of the 

simulations. The model parameter governing this rate was calibrated iteratively in order to generate 

simulations with a population size at equilibrium, given the inherent variability in population flows related 
to background mortality, sexual maturation (i.e., reaching the upper age limit of 40), and disease-induced 

mortality. At each time step, the exact number of men entering the population was simulated by drawing 
from a Poisson distribution with the rate parameter. 

5.2  Initialization of Attributes 
Persons entering the population were assigned attributes, some of which remained fixed by definition 

(e.g., race), others fixed by assumption (e.g., insertive versus receptive sexual role), and yet others 
allowed to vary over time (e.g., age and disease status). Here we describe three attributes in the first 

category: 

• For race/ethnicity, this model was based on a population composition that was 50% black MSM 

and 50% white MSM. This 1:1 ratio comes close to that for the Atlanta metropolitan area and also 
provides analytical clarity.  

• Circumcision status was randomly assigned to incoming men. Based on empirical data from 

Atlanta MSM,15 89.6% of men were circumcised before sexual onset. Circumcision was 
associated with a 60% reduction in the per-act probability of infection for HIV- males for insertive 
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anal intercourse only (i.e., circumcision did not lower the transmission probability if the HIV+ 

partner was insertive).2,18 

• The CCR5-D32 genotype was modeled by assigning a value of zero, one, or two D32 alleles. 

Compared to men without the D32 allele, heterozygous men (those with D32 alleles) were 70% 

less likely to become infected and D32 homozygous men (those with two D32 alleles) were fully 

immune from infection.19,20 The population distribution of genotypes was differential by race, with 

0% of black men and 3.4% of white men expressing as D32 homozygous, and 2.1% of black men 

and 17.6% of white men expressing as D32 heterozygous.19  

5.3 Exits from the Network 

All persons exited the network by age 40, either from mortality or by reaching the upper age bound of 
the MSM target population of interest. This upper limit of 40 was modeled deterministically (probability = 

1), but other exits due to mortality were modeled stochastically. Mortality included both natural (non-HIV) 
and disease-induced mortality causes before age 40. Background mortality rates were based on US all-

cause mortality rates specific to age and race from the National Vital Statistics life tables.21 Web Table 

14 shows the probability of mortality per year by age and race. 

Web Table 14. Mortality Rates by Race and Age Group. 

Age White Black 

18–24 0.00103 0.00159 

25–34 0.00133 0.00225 

35–39 0.00214 0.00348 

Natural mortality was applied to persons within the population at each time step stochastically by 
drawing from a binomial distribution for each eligible person with a probability parameter corresponding 

to that person’s risk of death tied to his age. Disease-related mortality, in contrast, was modeled based 
on clinical disease progression, as described in Web Appendix 6. 

5.4 Aging 
The aging process in the population was linear by time step for all active persons. The unit of time step 

in these simulations was one week, and therefore, persons were aged in weekly steps between the 
minimum and maximum ages allow (18 and 40 years old). Evolving age impacted background mortality, 

age-based mixing in forming new partnerships, and other behavioral features of the epidemic model 
described below. Persons who exited the network were no longer active and their attributes such as age 

were no longer updated. 
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6 WEB APPENDIX 6 (INTRAHOST EPIDEMIOLOGY) 
Intrahost epidemiology includes features related to the natural disease progression within HIV+ persons 

in the absence of clinical intervention. The main component of progression that was explicitly modeled 
for this study was HIV viral load. In contrast to other modeling studies that model both CD4 and viral 

load, our study used viral load progression to control both interhost epidemiology (HIV transmission 
rates) and disease progression eventually leading to mortality. 

Following prior approaches,1,2 we modeled changes in HIV viral load to account for the heighted viremia 
during acute-stage infection, viral set point during the long chronic stage of infection, and subsequent 

rise of VL at clinical AIDS towards disease-related mortality. The HIV viral load has a crucial impact on 
the rates of HIV transmission within serodiscordant pairs in the model, and this interaction is detailed in 

Section 8. A starting viral load of 0 is assigned to all persons upon infection. From there, the natural viral 

load curve is fit with the following parameters in Web Table 15. 

Web Table 15. HIV Natural History Parameters. 

Parameter Value Reference 

Time to peak viremia in acute stage 45 days Little22 

Level of peak viremia 6.886 log
10
 Little22 

Time from peak viremia to viral set point 45 days Little,22 Leynaert23 

Level of viral set point 4.5 log
10
 Little22 

Duration of chronic stage infection (no ART) 3550 days Buchbinder,24 Katz25 

Duration of AIDS stage 728 days Buchbinder24 

Peak viral load during AIDS (at death) 7 log
10
 Estimated from average duration of AIDS 

After infection, it takes 45 days to reach peak viremia, at a level of 6.886 log 10. From peak viremia, it 
takes another 45 days to reach viral set point, which is set at a level of 4.5 log 10. The total time of acute 

stage infection is therefore 3 months. The duration of chronic stage infection in the absence of clinical 
intervention is 3550 days, or 9.7 years. The total duration of pre-AIDS disease from infection is therefore 

approximately 10 years. At onset of AIDS, HIV viral load rises linearly from 4.5 log 10 to 7 log 10, at 
which point mortality is assumed to occur. The time spent in the AIDS stage is 728 days, or 2 years. This 

viral load trajectory is for ART-naïve persons only, and the influence of ART on disease progression is 

detailed in Web Appendix 7. These transitions are deterministic for all ART-naïve persons. 

 

7 WEB APPENDIX 7 (CLINICAL EPIDEMIOLOGY) 
Clinical epidemiological processes refer to all steps along the HIV care continuum after initial infection: 

diagnosis, linkage to care, treatment initiation and adherence, and HIV viral load suppression. In this 
model, these clinical features have critical interactions with behavioral features detailed above, as well as 
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impacts on the rates of HIV transmission, detailed below. The features of our model’s clinical processes 

generally follow the steps of the HIV care continuum, in which persons transition across states from 
infection to diagnosis to medical care linkage and ART initiation to HIV viral suppression.26 

7.1  HIV Diagnostic Testing 
Persons in our models were divided into non-testers (through age 40) and regular interval-based testers. 

Based on empirical data for Atlanta MSM,15 6.5% of MSM did not receive HIV testing before age 40. This 
was calculated based on a survey about never tested prior to the study, which may overestimate the 

final proportion who would have never tested before age 40. A fixed individual attribute for HIV treatment 
trajectories that characterized progression through the care continuum was randomly assigned upon 

entry into the population, with this group of 6.5% of MSM not accessing HIV testing or other forms of 
post-diagnostic HIV medical services. 

The remaining 93.5% who entered the HIV care continuum HIV tested at regular intervals, with the 

estimated mean time between tests for HIV-negative persons at 301 days for black MSM and 315 days 
for white MSM.15,27 This was calculated based on time since last test in the survey. Diagnostic testing 

was simulated stochastically using draws from a binomial distribution with probability parameters equal 
to the reciprocal of this interval. This generated a population-level geometric distribution of times since 

last test. 

We also modeled a 21-day window period after infection during which the tests of the truly HIV+ persons 

would show as negative to account for the lack of antibody response immediately after infection.28 HIV+ 

persons who tested after this window period would be correctly diagnosed with 100% test sensitivity. 
Individual-level attributes for diagnosis status and time since last HIV test were recorded for all MSM. 

7.2 Antiretroviral Therapy (ART) Initiation 
Consistent with previous models,1,2 we simulated the initiation of ART and subsequent clinical outcomes 

of full or partial HIV viral suppression based on men being in one of three clinical states: never tested, on 
treatment and partially virally suppressed, and on treatment with full viral suppression. There was 

insufficient empirical data to represent the patterns and rates at which individual men switch among 
these three states over the course of their infection, since the clinical ART landscape is constantly 

evolving. Therefore, we modeled men as being on one of the three fixed treatment trajectories as an 
individual-level attribute such that our model matched the population-level data on the prevalence of 

durable HIV viral suppression and treatment-naïve mortality.29,30  

Following HIV diagnosis (for the 93.5% of men who ever HIV test before age 40), MSM initiated 
treatment at a rate of 0.924 per week (Black MSM) or 0.1271 (White MSM).  This translates into an 

average interval between testing and treatment initiation of 10.8 weeks (Black MSM) and 7.9 weeks 
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(White MSM), consistent with empirical data.27 In the absence of quantitative data, we assumed no gap 

between treatment entry and ART initiation. 

7.3 ART Adherence and Viral Suppression 

MSM who initiated ART could cycle on and off treatment, where cycling off treatment resulted in an 
increase in the VL back up to the assumed set point of 4.5 log10. The slope of changes to VL were 

calculated such that it took a total of 3 months to transition between the set point and the on-treatment 
viral loads.31  Men on treatment could achieve partial or full suppression. Men with partial suppression 

were assumed to have a log10 viral load of 3.5, compared to 1.5 among those who were fully 
suppressed.31 The latter corresponds to an absolute viral load below the standard levels of detection (VL 

= 50).32 

The patterns of ART adherence leading to partial and full HIV viral suppression were estimated based on 

an analysis of HIV care patterns among MSM in the United States,29 which was required in order to 

obtain parameters that were specific to young MSM by race. Parameterizing our model used three types 
of inputs: (1) the proportion of those diagnosed who are on ART; (2) the proportion of those diagnosed 

who are virally suppressed; (3) the level of durable suppression (proportion on ART who have been 
suppressed for a year). Our source included recent estimates for (1) by race and by age, but not the 

interaction of the two. We used a weighted average of their 18–29 and 30–39-year-old data, and 
assumed that the overall prevalence ratio by race that they observed for each outcome held within this 

age group as well. This suggested that 30.2% of young Black MSM who were diagnosed were in care, 

and 74.0% of those were on ART, for a combined value of 22.3% of young Black MSM who were 
diagnosed being on ART at any time point.  Analogous figures for young White MSM were 46.6%, 

84.0% and 39.2%. For (3), we used the same method of deriving estimates specific to young Black 
MSM (47% of those on ART are durably suppressed) and young White MSM (60% for the corresponding 

figure). For (2), we used figures by race from the same paper; however, similar figures by age were not 
included.  Instead, we adjusted by using the relative rates of retention in care and suppression for young 

adults (25-44) compared to all respondents from an additional analysis of the care continuum for 
members of all risk groups (not just MSM-specific) in the US.33 This yielded estimates for the percent of 

young MSM on ART who are virally suppressed of 62.4% for Blacks and 67.7% for Whites. 

None of these three sets of values entered the model directly as inputs.  Parameter (3) was converted 
into a per-time step probability of falling out of suppression, by using the inverse geometric function to 

calculate the probability consistent with observed levels of durable suppression after 1 year.  Our other 
two input parameters were the proportion of those initiating ART who achieved full suppression, and the 

per-time step probability of re-achieving suppression after one had previously fallen out.  We simulated 
our full model iteratively until we identified the unique values of these parameters by race that yielded 
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the values estimated for parameters (1) and (2) above.  The resulting set of model inputs are shown in 

Web Table 16. 

Web Table 16. HIV Care Continuum Parameters. 

Parameter Black MSM White MSM 

Proportion of those initiating ART who achieved 
full suppression 0.614 0.651 

Per-time step probability of falling out of 
suppression 0.0102 0.0071 

Per-time step probability of re-achieving 
suppression 0.00066 0.00291 

7.4  Disease Progression and Mortality after ART Initiation 

Mortality after ART initiation was modeled based on the cumulative time on and off ART for persons who 
were fully or partially suppressed. The maximum time between infection and the start of AIDS was 9.7 

years.24 If a person in either the full or partial suppression categories who spent this much time off ART 
during the course of infection progressed to AIDS. For the partially suppressed, we assumed a 

maximum time on ART of 15 years, similar to previous models, to account for treatment failure.1 For this 

group, the time to AIDS was an additive function of two ratios: (time on treatment / maximum time on 
treatment) + (time off treatment / maximum time off treatment). AIDS was simulated to begin when the 

sum of this score exceeded 1. Persons who had ever initiated ART progressed through AIDS at a similar 
rate as those who were ART-naïve. 

 

8 WEB APPENDIX 8 (INTERHOST EPIDEMIOLOGY) 
Interhost epidemiological processes represent the HIV-1 disease transmission within the model. Disease 
transmission occurs between sexual partners who are active on a given time step. This Web Appendix 

will describe how the overall rate is calculated as a function of the intrahost epidemiological profile of 
each member of a partnership, and behavioral features within the dyad. 

8.1  Disease-Discordant Dyads 
At each time step in the simulation, a list of active dyads was selected based on the current composition 

of the network. This was called an “edgelist.” Given the three types of partnerships detailed above, the 
full edgelist was a concatenation of the type-specific sublists. The complete edgelist reflects the work of 

the STERGM- and ERGM-based network simulations, wherein partnerships formed on the basis of nodal 

attributes and degree distributions (see Web Appendix 2). Dyads active were considered active at a 
specific time step if the terminus of that simulated edge was less than or equal to the current time step 

(right-censored). From the full edgelist, a disease-discordant subset was created by removing those 
dyads in which both members were HIV- or both were HIV+. This left dyads that were discordant with 
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respect to HIV status, which was the set of potential partnerships over which infection may be 

transmitted at that time step. 

8.2 Per-Act HIV Transmission Probability 

Within disease-discordant dyads, HIV transmission was modeled based on a sexual act-by-act basis, in 
which multiple acts of varying infectiousness could occur within one partnership within a weekly time 

step. Determination of the number of acts within each discordant dyad for the time step, as well as 
condom use and role for each of those acts, was described in Web Appendix 3. Transmission by act 

was then modeled as a stochastic process for each discordant sex act following a binomial distribution 
with a probability parameter that is a multiplicative function of the following predictors of the HIV- and 

HIV+ partners within the dyad. The associated parameters are summarized in Web Table 17. 

Web Table 17. HIV Transmission Parameters. 

Predictor Partner Parameters References 

Sexual role (insertive 
or receptive) HIV- 

Receptive: 0.008938 base probability 
when HIV+ partner has 4.5 log

10
 viral 

load 
Vittinghoff34 

Insertive: 0.003379 base probability 
when HIV+ partner has 4.5 log

10
 viral 

load 
Vittinghoff34 

HIV viral load (VL) HIV+ Multiplier of 2.45(VL - 4.5) Wilson35 

Acute stage  HIV+ Multiplier of 6 Leynaert,23 Bellan36 

CCR5 status  HIV- 
Δ32 homozygote: multiplier of 0 Marmor19 

heterozygote: multiplier of 0.3 Marmor19 

Condom use Both Multiplier of 0.05 Varghese,37 Weller38, 
Smith39 

Circumcision status HIV-, insertive Multiplier of 0.40 Gray18 

For each act, the overall transmission probability was determined first with a base probability that was a 
function of whether the HIV- partner was in the receptive or insertive role, with the former at a 2.6-fold 

infection risk compared to the latter. The HIV+ partner’s viral load modifies this base probability in a non-
linear formulation, upwards if the VL was above the VL set point during chronic stage infection in the 

absence of ART, and downwards if it was below the set point. Following others, we modeled an excess 

transmission risk in the acute stage of infection above that predicted by the heightened VL during that 
period. Three covariates of the HIV- partner could reduce the risk of infection: the Δ32 allele on the 

CCRR5 gene, condom use within the act, circumcision status (only if the HIV- partner was insertive in 
that act). 

For condom use, we updated our previous approach to explicitly represent condom failure that would 
result in a transmission event. Our previous models used estimates of HIV incidence comparing 
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consistent condom users to occasional or non-condom users, resulting in a condom “efficacy” of 75-

80%. However, this efficacy gap of 20-25% is the function of both the biological/physiological gaps in 
protection given perfect and consistent condom use during anal intercourse as well as the human error 

resulting in impact use. Such error could represent condom breakage, misapplication, incomplete use 
during sexual activity, and other related causes.39 For this model, we assumed a 95% efficacy for the 

former, and a 15–40% absolute reduction in that efficacy as a function of condom failure to arrive at the 
previous range of 75–80% total effectiveness. We allowed that condom failure reduction to vary by race, 

given evidence that black condom failure rates may be 1–4 times higher than white rates.17 Finally, we 

included these two parameters in our model calibration given the uncertainty in the rates in this modeled 
population. We defined the prior distribution based on a uniform ranging from 15% to 40%. The 

posterior distribution value with the greatest likelihood was 21% for white MSM and 39% for black 
MSM. 

The final transmission rate per partnership per weekly time step was a function of the per-act probability 
of transmission in each act and the number of acts per time step. The per-act transmission probability 

could be heterogeneous within a partnership due to various types of acts in each interval: for example, a 
HIV- man who is versatile in role may have both insertive and receptive intercourse within a single 

partnership; some acts within a partnership may be protected by condom use while others are 

condomless. Transmission was simulated for each act within each serodiscordant dyad, based on draws 
from a binomial distribution with the probability parameter equal to the per-act transmission probabilities 

detailed above. 

9  WEB APPENDIX 9 (STI TRANSMISSION) 
9.1  Overview of Model Structure 

Directional transmission of NG and CT was modeled between sexual partners who were sexually active 
during a given time step. At each time step, a list of active dyads (the “edgelist”) was selected based on 

the current composition of the network. This edgelist concatenated the three types of partnerships 
included in the network simulations: main, casual, and one-off. Dyads were considered active at a 

particular time step if the terminus of that simulated edge was greater than or equal to the current time 
step. 

We created a disease-discordant subset of the edgelist for both NG and CT at each time step by 

removing dyads in which both members had the disease of interest or neither had the disease of 
interest. This left dyads discordant with respect to both NG and CT infection status, which was the set of 

potential partnerships in which the infections could be transmitted at that time step. 

Site-specific transmission of NG and CT was modeled on a sexual act-by-act basis, in which multiple 

acts of varying infectiousness could occur within a partnership within a weekly time step. The number of 
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anal sex acts per week for each ongoing relationship was determined from a random draw from a 

Poisson distribution, with the lambda (event rate) parameter of the distribution specific to the partnership 
type.4 For one-time contacts, the number was set deterministically to 1 for the time step in which it 

occurred.  

For site-specific disease transmission to occur, the sexual position of partners within an MSM anal 

intercourse dyad was considered. For example, receptive AI with a partner infected with a urethral STI 
was necessary for an individual to become rectally infected. Dual-site and dual-disease infection was 

possible, such that a man could have had, for example, rectal NG and rectal CT infection, rectal NG and 

urethral CT, or rectal NG and urethral NG concurrently. We modeled disease transmission by act as a 
stochastic process for each discordant sex act, which followed a binomial distribution with a probability 

parameter that was a multiplicative function of the base transmission probability and condom use. 

9.2  STI Co-Factor Effect on HIV Acquisition Probability 

We modeled an increased HIV acquisition risk from a current STI status. Chesson et al.40 described this 
effect for several STIs. Starting with a baseline HIV transmission probability per sex-act of 0.001 (95% 

CI: 0.0005–0.0015), they estimated a 10-fold (95% CI: 5–15) increase in per-act HIV transmission 
probability, to 0.014 (95% CI: 0.01–0.05), in the presence of NG infection. For CT infection, they 

estimated a 5-fold increase (95% CI: 3–15) in per-act HIV transmission probability to 0.0078 (95% CI: 
0.003–0.01). Vaughan et al.41 found that the hazard ratio for existing rectal NG or CT infection on HIV 

seroconversion was 2.7 (95% CI:1.2–6.4), and Pathela et al.42 estimated a similar risk ratio for the effect 

of rectal NG or CT infection on HIV acquisition, which was slightly elevated over estimates not taking 
site-specific infection into account.43 Using these estimates, we established a Bayesian prior distribution 

of 2.00–3.00 for the relative increase in per-act HIV acquisition risk for rectal STI infections, and 1.00–
2.00 for urethral STI infections. These estimates incorporate site-specific infection and assume an 

increased risk associated with rectal infection. After model fitting, the estimated posterior multiplier 
values for risk of HIV acquisition were 2.7807 for rectal NG and CT, and 1.7324 for urethral NG and CT. 

9.3  Chlamydia Transmission Probability 
Estimated values of the per-sex-act CT transmission risk in previous STI-only and HIV/STI models have 

depended on whether the infection was symptomatic, the type of sex act, as well as the role and 
position of the infected partner. The baseline per-act CT transmission risk for heterosexual encounters 

has been estimated in multiple models, with the middle 50% of per-act probability estimates describing 

MTF transmission clustered between 0.09–0.2044,45,54–58,46–53 with a wider range of 0.025 to 0.6.59–66 
Estimated per-act transmission risk was generally higher in non-main partnerships when models 

incorporated or characterized different risk estimates by partnership types.49 Per-partnership 
transmission risk estimates ranged widely from 0.09 to 0.7,56,67–70 and per-day infection probabilities 

ranged from 0.001571 to 0.154, with higher estimates for casual partnerships relative to main 



 26 

partnerships.71–74 In models where the direction of transmission was reported, the estimated per-act FTM 

CT transmission probability varied, commonly estimated as 0.5–0.8 times the MTF CT transmission 
probability,45,46,53,58,59,61,72 although some models did estimate that the FTM transmission probability was 

greater.44,73 

For our model, we focus on the baseline male-to-male CT transmission risk through anal intercourse in 

STI and HIV/STI models. Fewer models and estimates of this probability exist for MSM than do for 
heterosexual populations. Estimates of the per-act transmission probability have included 0.1–0.24,75 0.4 

for receptive AI,76 0.32 for insertive AI,76 and 0.35 per-partner.77 With greater uncertainty around these 

parameters, we established a prior distribution of 0.30–0.60 for the per-act rectal CT transmission 
likelihood, and a distribution of 0.20–0.50 for urethral CT transmission to incorporate site-specific 

infection. The estimated posterior means were 0.3216 for per sex-act rectal CT transmission probability 
and 0.2130 for per sex-act urethral CT transmission probability. We also include a multiplier of 0.30 for 

the effect of condom usage on CT transmission probability to reflect the decreased probability of 
transmission in protected sex acts, consistent with the literature.78,79 

9.4 Gonorrhea Transmission Probability 
Estimates of the NG transmission risk per sex-act have been diverse in HIV/STI models and STI-only 

models, depending on the type of sex act as well as the role and position of the infected partner. This 
baseline per-act risk has been estimated in a number of models, with the middle 50% of estimates of the 

per-act risk from MTF transmission models located between 0.20 and 0.60,44,45,65,68,80–87,46,88–90,47,48,53,58–60,62 

with an outer range of 0.1 to 1.87,91,92 Per-day infection probability estimates ranged from 0.011 to 
0.6,72,82,93 with higher probabilities estimates for non-main partnerships. Per-partnership estimates 

differed widely, ranging from 0.10 to 0.80.61,94,95 When FTM transmission was distinguished, the per-
act44,45,88,89,94,46,58,61,72,80,81,83,87 and per-partnership59,95 estimated risk tended to be decreased or halved, 

compared to the MTF risk, with some exceptions in which the FTM risk was estimated to be 
greater.53,83,90 

Compared to CT infection, the baseline transmission probability per sex-act for male-male anal 
intercourse in STI models has been better characterized for NG infection. Estimates of these risks have 

ranged widely from 0.02 and 0.8,76,77,96–99 with greater risks assumed for receptive anal intercourse 

compared to insertive anal intercourse. To account for the uncertainty in this parameter estimate, we 
established a prior distribution of 0.30–0.60 for the per-act rectal NG transmission likelihood, and a 

distribution of 0.20–0.50 for urethral NG transmission to incorporate site-specific infection. Bayesian 
calibration generated posterior values of 0.3577 for per sex-act rectal NG transmission probability and 

0.2481 for per sex-act urethral NG transmission probability. Similar to CT, we also included a multiplier 
of 0.30 for the effect of condom usage on NG transmission probability to reflect the decreased 

probability of transmission in protected sex acts. 
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10  WEB APPENDIX 10 (STI TESTING AND TREATMENT) 
10.1 Overview of Model Structure 

Testing and treatment for NG and CT before the introduction of HIV PrEP and its associated interval-
based screening was a function of whether the infection was symptomatic or asymptomatic. Treatment 

status was assigned stochastically among those with either symptomatic or asymptomatic NG or CT 

infection acquired prior to the current time step. Following empirical data, we simulated that 90% of men 
with NG and 85% of men with CT who have symptomatic infection successfully sought and completed 

treatment.100 The average time on treatment was 2 weeks, with a stochastic recovery process described 
below. 

The site of infection influenced the symptomatic status of a given infection, with rectal infections more 
likely to be asymptomatic and urethral infections more likely to be symptomatic.101 The symptomatic 

status of an infection was assigned stochastically from a binomial distribution at the time of infection 
according to site-specific and infection-specific probability parameters for symptomatic status. We 

assumed a lower level screening and treatment for asymptomatic infection outside of PrEP (5% to 20%) 

given the much greater likelihood that those asymptomatic infections would prompt testing events 
independent of routine, planned STI screening. 

After the introduction of PrEP in the intervention model scenarios, we simulated STI screening among 
MSM by the recommended CDC clinical practice guidelines for PrEP.102 Men were screened for STIs 

every 6 months after PrEP initiation, and sensitivity analyses varied this screening interval from 1–12 
months. We varied the fraction of STI-screened PrEP users who received effective treatment from 0% to 

100% in another sensitivity analysis. While we did not explicitly model treatment failure for those treated 

for STIs, this parameter may serve as a potential representation. While on PrEP, men were assumed to 
continue the symptoms-based treatment for their STIs at the same frequency as before PrEP. 

10.2  Chlamydia Symptoms 
The asymptomatic nature of some CT infections can have an impact on the risk of transmission, as well 

as the dynamics of spread in a population. These estimates have varied widely for CT. For men, the 
middle 50% of estimates of the proportion of infections that are symptomatic from STI or HIV/STI 

models has ranged from 0.3–0.5,44,50,74,75,80,53,55,58,59,62,65,69,70 with an outer range of 0–0.7548,54,57,103,104 and a 
sizable cluster of estimates at 0.75.63,64,72,73,77 Beck et al.76 differentiated between the probability of 

symptoms of urethral and rectal CT infections in MSM, estimating a 4-fold increase in the likelihood of 
symptoms (0.58 versus 0.14) at the urethral site. The proportion symptomatic in males tends to be 

increased 1.5–3 fold over the same proportion in women,44,50,73,74,80,53–55,58,59,69,70,72 with a few exceptions 

where women are estimated to be more symptomatic.57,65,104 Given the uncertainty surrounding this 
estimate, we established a prior distribution for calibration of 0.01–0.15 for the probability that a rectal 

CT infection would be symptomatic, and a distribution of 0.60–0.95 for the probability that a urethral CT 
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infection would be symptomatic to incorporate site-specific infection. The estimated posterior values 

were 0.1035 for the probability of symptomatic rectal CT, and a probability of 0.8850 for symptomatic 
urethral CT. 

10.3  Gonorrhea Symptoms 
NG infections can also be present with or without symptoms, and estimates of the proportion of 

infections that are symptomatic have been varied. The middle 50% of estimates of this proportion from 
STI or HIV/STI models for men has ranged from 0.35–0.88,44,58,62,65,80,82,88,92,97,98 with a lower quartile of 

0.11 to 0.2548,59,87,103 with a sizable group of estimates between 0.9 to 0.95.53,72,77,95,105 Beck et al.76 
differentiated between the probability of symptoms of urethral and rectal NG infections in MSM, 

estimating a nearly 6-fold increase in the likelihood of symptoms (0.90 versus 0.16) at the urethral site. 
The proportion symptomatic in males tends to be increased 1.5–3 fold over the same proportion in 

women for NG.44,53,105,58,59,72,80,87,88,92,95 With less certainty about these parameters, we established a prior 

distribution of 0.01–0.15 for the probability that a rectal NG infection would be symptomatic, and a 
distribution of 0.60–0.95 for the probability that a urethral NG infection. The resulting posterior values 

were 0.0770 for the probability of symptomatic rectal NG, and 0.8244 for the probability of symptomatic 
urethral NG. As with CT, these reflect an increased likelihood of symptomatic urethral infection, which 

could be due to easier detection at a urethral site. 

11  WEB APPENDIX 11 (STI RECOVERY) 
We modeled recovery from a NG or CT infection according to whether men were treated for their 
infection. Recovery from infection back to susceptibility can occur through natural clearance of each 

infection or through effective antibiotic treatment. Recovery from untreated NG or CT infection was 

simulated as a stochastic process among those whose infection, whether symptomatic or 
asymptomatic, had been present for a duration of time greater than the natural history of asymptomatic 

infection, a calibrated parameter. The probability of recovery per time-step for symptomatic and 
asymptomatic untreated infection was the reciprocal of the duration of infection. Recovery from treated 

NG or CT infection was a stochastic process based on draws from a binomial distribution among those 
who treated for their infection, occurring with a per-time-step probability equal to the reciprocal of the 

duration of the length of treatment. Upon recovery, individuals were immediately susceptible to 
reinfection. 

11.1  Duration of Chlamydia Infection 
Estimates of the duration of CT infection have varied broadly depending on whether the infection was 

symptomatic. STI and HIV/STI models have generally estimated the duration of symptomatic CT 

infection in men primarily as 30–35 days,50,51,54–57,64,70,72,73 but some models have estimates closer to 13–
14 days for treated men62,69,76 or at a higher range between 112–365 days.53,58,59,76 Models which have not 
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specified whether the infection is symptomatic or asymptomatic have widely divergent estimates ranging 

from 60 days up to 370 days.49,52,66,71,77,106,107 Some models specify the length of an infectious stage 
ranging from 3 weeks in treated infection up to 457 days,47,80 while Welte et al. estimate the incubation 

time of CT as 12 days.56 

For models specifying the duration of an asymptomatic CT infection, estimates tend to cluster between 

200–240 days50,53–56,62,72,73,75 and 433–497 days.51,64,74,108 Some models estimated 180 days,57,69 365 
days,70 or 622 days,44,58 reflecting a range of uncertainty. Beck et al.76 have estimated 240 days for 

urethral infection and 497 days for rectal infection. Given this uncertainty, we established a prior 

distribution of 39–65 weeks for the duration of asymptomatic rectal or urethral CT infection. These 
resulted in posterior values of 44.25 weeks for the duration of asymptomatic CT infection.62 

11.2  Duration of Gonorrhea Infection 
Estimates of NG duration have also varied widely depending on whether the infection was symptomatic. 

STI and HIV/STI models have modeled the duration of symptomatic NG infection as bimodal, with some 
estimates as low as 12–13 days,62,72,76,83,95, generally for treated or care-seeking persons, and others 

between 105–185 days, including for untreated symptomatic infection.44,53,58,76 Models which have not 
specified whether the infection is symptomatic or asymptomatic have widely divergent estimates of 

duration, ranging from 10–60 days77,85,86,89–91,109 to 330–365 days87,106 with estimates also observed at 30-
day intervals between 60 days and 200 days.59,94,98,109 Estimates of the duration of the infectious stage of 

NG ranged from 14 days in treated individuals6 to 180–185 days in untreated individuals76,84,88 but varied 

widely between those extremes.47,80,81,105 

For models specifying the duration of an asymptomatic NG infection, estimates were also bimodal, with 

clusters at 105–135 days44,53,58,72 and 180–185 days.62,95 Beck et al.76 have estimated 240 days for 
urethral infection and 300 days for rectal infection. Given this uncertainty, we established a prior 

distribution of 26–52 weeks for the duration of both asymptomatic rectal and asymptomatic urethral NG 
infection. The estimated posterior means were 35.12 weeks for the duration of asymptomatic rectal and 

urethral NG infection. 

12 WEB APPENDIX 12 (MODEL CALIBRATION AND ANALYSIS) 
This Web Appendix describes the methods for executing the simulations and conducting the data 
analysis on the outcomes in further detail. 

12.1  Calibration Methods 
Starting with a population of 10,000 MSM, HIV infection was initially seeded in 13.2% of the white MSM 

population and 43.4% of the black MSM population, urethral NG and CT in 1.5% of the population, and 

rectal NG and CT in 1.5% of the population. A set of burn-in simulations was then used to allow the 
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natural dynamics of HIV and STI transmission, demography, and other population features to evolve 

over time. The goal of the burn-in simulation was to arrive at a network of MSM that was independent of 
the initial conditions resulting from the seeding. This also established a population composition with 

behavioral and biological features calibrated to match external targets for HIV prevalence and STI 
incidence.4 

Many HIV/STI models of disease transmission have been parameterized using populations both in the 
United States and internationally. These models have differed in type, including deterministic 

compartmental models, stochastic models, and agent-based transmission models. They have also 

differed by the populations explicitly modeled, whether MSM only, heterosexual men and women only, 
or a combination of both populations. Given the variation in parameter values from population to 

population, we use and evaluate information and estimates from models of male-to-female (MTF), 
female-to-male (FTM), and male-to-male disease transmission to establish our parameters and prior 

distributions. These include calibrated estimates from published mathematical models, findings from 
natural history studies that have been parameters in those models, and estimates where other 

information is not available.  

We used Bayesian approaches to define model parameters with uncertain values, construct prior 

distributions for those parameters, and fit the model to HIV/STI prevalence and incidence data to 

estimate the posterior distributions of those parameter values. 

We used approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) 

methods36,110 to calibrate behavioral parameters in which there was measurement uncertainty in order to 
match the simulated HIV prevalence and STI incidence at the end of the burn-in simulations to the 

targeted HIV prevalence and STI incidence. The details of ABC depend on the specific algorithm used, 
but in this case, ABC-SMC proceeded as follows. 

For each candidate parameter, 𝜃, to be estimated, we: 

1. Sampled a candidate 𝜃0 from a prior distribution 𝜋(𝜃) 

2. Simulated the epidemic model with candidate value, 𝜃0.  

3. Tested if a distance statistic, 𝑑 (e.g., the difference between observed HIV prevalence and model 

simulated prevalence) was greater than a tolerance threshold, 𝜖. 

a. If 𝑑 > 	𝜖 then discard 

b. If 𝑑 < 	𝜖 then add the candidate 𝜃0 to the posterior distribution of 𝜃.  

4. Sample the next sequential candidate, 𝜃0?8, either independently from 𝜋(𝜃) (if 3a) or from 𝜃0 plus a 
perturbation kernel with a weight based on the current posterior distribution (if 3b). 
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For the ABC algorithms to calibrate to the observed HIV prevalence and STI incidence, a total of 500 

simulations were required for 50 years of calendar time each. The target statistics were matched during 
this burn-in model and also during the no-PrEP base model featured in the main manuscript. 

12.2  Calibration Outcomes 
Model calibration performed as expected for mean HIV prevalence by race compared to the target 

statistics, with average HIV prevalence among Black MSM of 43.1% (compared to the 43.4% target 

statistic) and 13.1% among White MSM (compared to the 13.2% target statistic). By race-specific model 

calibration, therefore, the calibration was successful.  

As a method of externally validating the model, we also compared simulated HIV prevalence from the 
calibrated burn-in model to HIV prevalence by the interaction of race and age group. Although the model 

was not calibrated to this interaction, the external validity of the model is improved with this type of out-of-

model fit. The summary statistics of the simulated data compared to the empirical estimates from the 

target population from Sullivan et al. are shown in Web Table 18 below.111 

Web Table 18. HIV Care Continuum Parameters. 

  Black MSM Prevalence White MSM Prevalence 

  Empirical (95% CI) Simulated Empirical (95% CI) Simulated 

Age Group       

18–19 7.4% (2.1%, 23.4%) 2.9% 6.3% (1.1%, 28.3%) 0.9% 

20–24 33.9% (27.0%, 41.7%) 30.4% 5.5% (2.4%, 12.2%) 5.6% 

25–29 45.2% (37.2%, 53.6%) 47.4% 14.3% (8.9%, 22.2%) 12.8% 

30–39 60.0% (51.2%, 68.2%) 66.1% 15.7% (10.3%, 23.2%) 19.9% 

As shown in Web Table 18, the simulated prevalence was within the 95% confidence intervals for 7 out 
of the eight target statistics. This provides strong evidence of model validity for reproducing the HIV 

transmission dynamics across race and age in this target population. The one target statistic in which 
the simulated prevalence fell outside the 95% confidence intervals of the empirical data was White MSM 

aged 18–19, where the simulated prevalence was less than 1% and the empirical prevalence was 6.3%, 
with a lower bound of the confidence interval of 1.1%. This suggests that the transmission dynamics 

particularly in this age and race combination may not be well represented by the model, with one 
example being the initialization of incoming 18-year-olds as uninfected. Future model interactions will 

explore this assumption in greater detail. However, because the model was able to produce HIV 
prevalence by race and age for the remaining 7 target statistics, the overall model has been sufficiently 

validated for these current purposes of the study.  
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12.3  Intervention Simulations 
The intervention scenarios are described fully within the main paper. For each scenario, we simulated 
the model scenario 250 times for 10 calendar years each. Data from each simulation were merged, and a 

complete 250-simulation data file was retained for each scenario. All burn-in and intervention simulations 

were conducted on the Hyak high-performance computing platform at the University of Washington. 

 

  



 33 

13 REFERENCES 
1 Goodreau SM, Carnegie NB, Vittinghoff E, et al. What drives the US and Peruvian HIV epidemics in men who 

have sex with men (MSM)? PLoS One 2012; 7: e50522. 
2 Goodreau SM, Carnegie NB, Vittinghoff E, et al. Can male circumcision have an impact on the HIV epidemic 

in men who have sex with men? PLoS One 2014; 9: e102960. 
3 Carnegie NB, Goodreau SM, Liu A, et al. Targeting pre-exposure prophylaxis among men who have sex with 

men in the United States and Peru: partnership types, contact rates, and sexual role. J Acquir Immune Defic 
Syndr 2015; 69: 119–25. 

4 Jenness SM, Goodreau SM, Rosenberg E, et al. Impact of the Centers for Disease Control’s HIV 
preexposure prophylaxis guidelines for men who have sex with men in the United States. J Infect Dis 2016; 
214: 1800–7. 

5 Jenness SM, Sharma A, Goodreau SM, et al. Individual HIV Risk versus population impact of risk 
compensation after HIV preexposure prophylaxis initiation among men who have sex with men. PLoS One 
2017; 12: e0169484. 

6 Jenness SM, Weiss KM, Goodreau SM, et al. Incidence of gonorrhea and chlamydia following human 
immunodeficiency virus preexposure prophylaxis among men who have sex with men: A modeling study. 
Clin Infect Dis 2017; 65: 712–8. 

7 Goodreau SM, Hamilton DT, Jenness SM, et al. Targeting Human Immunodeficiency Virus Pre-Exposure 
Prophylaxis to Adolescent Sexual Minority Males in Higher Prevalence Areas of the United States: A 
Modeling Study. J Adolesc Heal 2018; 62: 311–9. 

8 Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M. statnet: Software Tools for the 
Representation, Visualization, Analysis and Simulation of Network Data. J Stat Softw 2008; 24: 1548–7660. 

9 Goodreau SMSM, Rosenberg ESES, Jenness SM, et al. Sources of racial disparities in HIV prevalence in 
men who have sex with men in Atlanta, GA, USA: a modelling study. Lancet HIV 2017; 4: e311–20. 

10 Sullivan PS, Carballo-Dieguez A, Coates T, et al. Successes and challenges of HIV prevention in men who 
have sex with men. Lancet 2012; 380: 388–99. 

11 Krivitsky PN, Handcock MS. A Separable Model for Dynamic Networks. J R Stat Soc Ser B Stat Methodol 
2014; 76: 29–46. 

12 Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M. ergm: A Package to Fit, Simulate and 
Diagnose Exponential-Family Models for Networks. J Stat Softw 2008; 24: nihpa54860. 

13 Carnegie NB, Krivitsky PN, Hunter DR, Goodreau SM. An approximation method for improving dynamic 
network model fitting. J Comput Graph Stat; 24: 502–19. 

14 Krivitsky PN, Handcock MS, Morris M. Adjusting for Network Size and Composition Effects in Exponential-
Family Random Graph Models. Stat Methodol 2011; 8: 319–39. 

15 Sullivan PS, Rosenberg ES, Sanchez TH, et al. Explaining racial disparities in HIV incidence in black and 
white men who have sex with men in Atlanta, GA: a prospective observational cohort study. Ann Epidemiol 
2015; 25: 445–54. 

16 Grey JA, Rothenberg RB, Sullivan PS, Rosenberg ES. Disassortative Age-Mixing Does Not Explain 
Differences in HIV Prevalence between Young White and Black MSM: Findings from Four Studies. PLoS 
One 2015; 10: e0129877. 

17 Kim M, McKenney J, Khosropour CM, et al. Factors Associated With Condom Breakage During Anal 
Intercourse: A Cross-Sectional Study of Men Who Have Sex With Men Recruited in an Online Survey. JMIR 
Public Heal Surveill 2016; 2: e7. 

18 Gray RH, Kigozi G, Serwadda D, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a 
randomised trial. Lancet 2007; 369: 657–66. 

19 Marmor M, Sheppard HW, Donnell D, et al. Homozygous and heterozygous CCR5-Delta32 genotypes are 
associated with resistance to HIV infection. J Acquir Immune Defic Syndr 2001; 27: 472–81. 

20 Zimmerman PA, Buckler-White A, Alkhatib G, et al. Inherited resistance to HIV-1 conferred by an inactivating 
mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined 
racial background, and quantified risk. Mol Med 1997; 3: 23–36. 

21 United States Census Bureau. Mortality Data. 2012 
http://www2.census.gov/library/publications/2011/compendia/statab/131ed/tables/vitstat.pdf (accessed 
Jan 26, 2016). 



 34 

22 Little SJ, McLean AR, Spina CA, Richman DD, Havlir D V. Viral dynamics of acute HIV-1 infection. J Exp 
Med 1999; 190: 841–50. 

23 Leynaert B, Downs AM, de Vincenzi I. Heterosexual transmission of human immunodeficiency virus: 
variability of infectivity throughout the course of infection. European Study Group on Heterosexual 
Transmission of HIV. Am J Epidemiol 1998; 148: 88–96. 

24 Buchbinder SP, Katz MH, Hessol NA, O’Malley PM, Holmberg SD. Long-term HIV-1 infection without 
immunologic progression. AIDS 1994; 8: 1123–8. 

25 Katz MH, Hessol NA, Buchbinder SP, Hirozawa A, O’Malley P, Holmberg SD. Temporal trends of 
opportunistic infections and malignancies in homosexual men with AIDS. J Inf Dis 1994; 170: 198–202. 

26 Mugavero MJ, Amico KR, Horn T, Thompson MA. The state of engagement in HIV care in the United States: 
from cascade to continuum to control. Clin Infect Dis 2013; 57: 1164–71. 

27 Rosenberg ES, Millett GA, Sullivan PS, Del Rio C, Curran JW. Understanding the HIV disparities between 
black and white men who have sex with men in the USA using the HIV care continuum: a modeling study. 
Lancet HIV 2014; 1: e112–8. 

28 Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma 
donors: implications for diagnosis and staging of primary HIV infection. AIDS 2003; 17: 1871–9. 

29 Beer L, Oster AM, Mattson CL, Skarbinski J. Disparities in HIV transmission risk among HIV-infected black 
and white men who have sex with men, United States, 2009. AIDS 2014; 28: 105–14. 

30 Bertolli J, Shouse RL, Beer L, et al. Using HIV surveillance data to monitor missed opportunities for linkage 
and engagement in HIV medical care. Open AIDS J 2012; 6: 131–41. 

31 Chu H, Gange SJ, Li X, et al. The effect of HAART on HIV RNA trajectory among treatment-naive men and 
women: a segmental Bernoulli/lognormal random effects model with left censoring. Epidemiology 2010; 21 
Suppl 4: S25-34. 

32 Chun T-W, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-
1 infection. Nature 1997; 387: 183–8. 

33 Hall HI, Frazier EL, Rhodes P, et al. Differences in human immunodeficiency virus care and treatment among 
subpopulations in the United States. JAMA Intern Med 2013; 173: 1337–44. 

34 Vittinghoff E, Douglas J, Judson F, McKirnan D, MacQueen K, Buchbinder SP. Per-contact risk of human 
immunodeficiency virus transmission between male sexual partners. Am J Epidemiol 1999; 150: 306–11. 

35 Wilson DP, Law MG, Grulich AE, Cooper DA, Kaldor JM. Relation between HIV viral load and infectiousness: 
a model-based analysis. Lancet 2008; 372: 314–20. 

36 Bellan SE, Dushoff J, Galvani AP, Meyers LA. Reassessment of HIV-1 acute phase infectivity: accounting for 
heterogeneity and study design with simulated cohorts. PLoS Med 2015; 12: e1001801. 

37 Varghese B, Maher JE, Peterman TA, Branson BM, Steketee RW. Reducing the risk of sexual HIV 
transmission: quantifying the per-act risk for HIV on the basis of choice of partner, sex act, and condom use. 
Sex Transm Dis 2002; 29: 38–43. 

38 Weller S, Davis K. Condom effectiveness in reducing heterosexual HIV transmission. Cochrane Database 
Syst Rev 2002; : CD003255. 

39 Smith DDK, Herbst JHJ, Zhang X, Rose CE. Condom effectiveness for HIV prevention by consistency of use 
among men who have sex with men in the United States. J Acquir Immune Defic Syndr 2015; 68: 337–44. 

40 Chesson HW, Pinkerton SD. Sexually transmitted diseases and the increased risk for HIV transmission: 
Implications for cost-effectiveness analyses of sexually transmitted disease prevention interventions. J 
Acquir Immune Defic Syndr 2000; 24: 48–56. 

41 Vaughan ASA, Kelley CCF, Luisi N, et al. An application of propensity score weighting to quantify the causal 
effect of rectal sexually transmitted infections on incident HIV among men who have sex with men. BMC 
Med Res Methodol 2015; 15: 25. 

42 Pathela P, Braunstein SL, Blank S, Schillinger JA. HIV incidence among men with and those without sexually 
transmitted rectal infections: estimates from matching against an HIV case registry. Clin Infect Dis 2013; 57: 
1203–9. 

43 Chesson HW, Bernstein KT, Gift TL, Marcus JL, Pipkin S, Kent CK. The cost-effectiveness of screening men 
who have sex with men for rectal chlamydial and gonococcal infection to prevent HIV Infection. Sex Transm 
Dis 2013; 40: 366–71. 

44 Johnson LF, Dorrington RE, Bradshaw D, Coetzee DJ. The role of sexually transmitted infections in the 



 35 

evolution of the South African HIV epidemic. Trop Med Int Heal 2012; 17: 161–8. 
45 Pinkerton SD, Layde PM, DiFranceisco W, Chesson HW, NIMH Multisite HIV Prevention Trial Group. All 

STDs are not created equal: An analysis of the differential effects of sexual behaviour changes on different 
STDs. Int J STD AIDS 2003; 14: 320–8. 

46 Pinkerton SD, Chesson HW, Layde PM, National Institute of Mental Health Multisite HIV Prevention Trial 
Group. Utility of behavioral changes as markers of sexually transmitted disease risk reduction in sexually 
transmitted disease/HIV prevention trials. J Acquir Immune Defic Syndr 2002; 31: 71–9. 

47 Stigum H, Magnus P, Veierod M, Bakketeig LS. Impact on Sexually Transmitted Disease Spread of 
Increased Condom Use by Young Females, 1987–1992. Int J Epidem 1995; 24: 813–20. 

48 Vickerman P, Watts C, Peeling RW, Mabey D, Alary M. Modelling the cost effectiveness of rapid point of 
care diagnostic tests for the control of HIV and other sexually transmitted infections among female sex 
workers. Sex Transm Infect 2006; 82: 403–12. 

49 Althaus CL, Heijne JCM, Herzog SA, Roellin A, Low N. Individual and population level effects of partner 
notification for Chlamydia trachomatis. PLoS One 2012; 7: e51438. 

50 Andersen B, Gundgaard J, Kretzschmar M, Olsen J, Welte R, Oster-Gaard L. Prediction of costs, 
effectiveness, and disease control of a population-based program using home sampling for diagnosis of 
urogenital Chlamydia trachomatis infections. Sex Transm Dis 2006; 33: 407–15. 

51 Davies B, Anderson S-J, Turner KME, Ward H. How robust are the natural history parameters used in 
chlamydia transmission dynamic models? A systematic review. Theor Biol Med Model 2014; 11: 8. 

52 Heijne JCM, Herzog SA, Althaus CL, Tao G, Kent CK, Low N. Insights into the timing of repeated testing 
after treatment for Chlamydia trachomatis: data and modelling study. Sex Transm Infect 2013; 89: 57–62. 

53 Hui BB, Gray RT, Wilson DP, et al. Population movement can sustain STI prevalence in remote Australian 
indigenous communities. BMC Infect Dis 2013; 13: 188. 

54 Kretzschmar M, Satterwhite C, Leichliter J, Berman S. Effects of screening and partner notification on 
Chlamydia positivity in the United States: a modeling study. Sex Transm Dis 2012; 39: 325–31. 

55 Kretzschmar M, Welte R, van den Hoek A, Postma MJ. Comparative model-based analysis of screening 
programs for Chlamydia trachomatis infections. Am J Epidemiol 2001; 153: 90–101. 

56 Welte R, Postma M, Leidl R, Kretzschmar M. Costs and effects of chlamydial screening: dynamic versus 
static modeling. Sex Transm Dis 2005; 32: 474–83. 

57 Turner KME, Adams EJ, Gay N, Ghani AC, Mercer C, Edmunds WJ. Developing a realistic sexual network 
model of chlamydia transmission in Britain. Theor Biol Med Model 2006; 3: 3. 

58 Johnson LF, Alkema L, Dorrington RE. A Bayesian approach to uncertainty analysis of sexually transmitted 
infection models. Sex Transm Infect 2010; 86: 169–74. 

59 Freeman EE, Orroth KK, White RG, et al. Proportion of new HIV infections attributable to herpes simplex 2 
increases over time: simulations of the changing role of sexually transmitted infections in sub-Saharan 
African HIV epidemics. Sex Transm Infect 2007; 83 Suppl 1: i17-24. 

60 Pinkerton SD, Chesson HW, Crosby RA, Layde PM. Linearity and nonlinearity in HIV/STI transmission: 
implications for the evaluation of sexual risk reduction interventions. Eval Rev 2011; 35: 550–65. 

61 Swinton J, Garnett GP, Brunham RC, Anderson RM. Gonococcal infection, infertility, and population growth: 
I. Endemic states in behaviourally homogeneous growing populations. IMA J Math Appl Med Biol 1992; 9: 
107–26. 

62 Gopalappa C, Huang Y-LA, Gift TL, Owusu-Edusei K, Taylor M, Gales V. Cost-effectiveness of screening 
men in Maricopa County jails for chlamydia and gonorrhea to avert infections in women. Sex Transm Dis 
2013; 40: 776–83. 

63 Gray RT, Beagley KW, Timms P, Wilson DP. Modeling the impact of potential vaccines on epidemics of 
sexually transmitted Chlamydia trachomatis infection. J Inf Dis 2009; 199: 1680–8. 

64 Schmid B V, Kretzschmar M. Determinants of sexual network structure and their impact on cumulative 
network measures. PLoS Comput Biol 2012; 8: e1002470. 

65 Turner KME, Round J, Horner P, et al. An early evaluation of clinical and economic costs and benefits of 
implementing point of care NAAT tests for Chlamydia trachomatis and Neisseria gonorrhoea in genitourinary 
medicine clinics in England. Sex Transm Infect 2014; 90: 104–11. 

66 Turner KME, Adams EJ, Lamontagne DS, Emmett L, Baster K, Edmunds WJ. Modelling the effectiveness of 
chlamydia screening in England. Sex Transm Infect 2006; 82: 496–502. 



 36 

67 Althaus CL, Heijne JCM, Low N. Towards more robust estimates of the transmissibility of Chlamydia 
trachomatis. Sex Transm Dis 2012; 39: 402–4. 

68 Pinkerton SD, Layde PM, NIMH multisite HIV prevention trial group. Using sexually transmitted disease 
incidence as a surrogate marker for HIV incidence in prevention trials: a modeling study. Sex Transm Dis 
2002; 29: 298–307. 

69 Owusu-Edusei K, Hoover KW, Gift TL. Cost-effectiveness of opt-out chlamydia testing for high-risk young 
women in the US. Am J Prev Med 2016; 51: 216–24. 

70 de Vries R, van Bergen JEAM, de Jong-van den Berg LTW, Postma MJ, PILOT-CT Study Group. Systematic 
screening for Chlamydia trachomatis: estimating cost-effectiveness using dynamic modeling and Dutch 
data. Value Heal 2006; 9: 1–11. 

71 Clarke J, White KAJ, Turner K. Approximating optimal controls for networks when there are combinations of 
population-level and targeted measures available: chlamydia infection as a case-study. Bull Math Biol 2013; 
75: 1747–77. 

72 Kretzschmar M, van Duynhoven YT, Severijnen AJ. Modeling prevention strategies for gonorrhea and 
Chlamydia using stochastic network simulations. Am J Epidemiol 1996; 144: 306–17. 

73 Roberts TE, Robinson S, Barton PM, et al. Cost effectiveness of home based population screening for 
Chlamydia trachomatis in the UK: economic evaluation of chlamydia screening studies (ClaSS) project. BMJ 
2007; 335: 291. 

74 Schmid B V, Over EAB, van den Broek IVF, et al. Effects of population based screening for Chlamydia 
infections in the Netherlands limited by declining participation rates. PLoS One 2013; 8: e58674. 

75 Xiridou M, Vriend HJ, Lugner AK, et al. Modelling the impact of chlamydia screening on the transmission of 
HIV among men who have sex with men. BMC Infect Dis 2013; 13: 436. 

76 Beck EC, Birkett M, Armbruster B, Mustanski B. A Data-Driven Simulation of HIV Spread Among Young Men 
Who Have Sex With Men: Role of Age and Race Mixing and STIs. J Acquir Immune Defic Syndr 2015; 70: 
186–94. 

77 Tuli K, Kerndt PR. Preventing sexually transmitted infections among incarcerated men who have sex with 
men: a cost-effectiveness analysis. Sex Transm Dis 2009; 36: S41-8. 

78 Darrow WW. Condom use and use-effectiveness in high-risk populations. Sex Transm Dis 1989; 16: 157–60. 
79 Joesoef MR, Linnan M, Barakbah Y, Idajadi A, Kambodji A, Schulz K. Patterns of sexually transmitted 

diseases in female sex workers in Surabaya, Indonesia. Int J STD AIDS 1997; 8: 576–80. 
80 Korenromp EL, Van Vliet C, Grosskurth H, et al. Model-based evaluation of single-round mass treatment of 

sexually transmitted diseases for HIV control in a rural African population. AIDS 2000; 14: 573–93. 
81 Marseille E, Kahn JG, Billinghurst K, Saba J. Cost-effectiveness of the female condom in preventing HIV and 

STDs in commercial sex workers in rural South Africa. Soc Sci Med 2001; 52: 135–48. 
82 Armbruster B, Brandeau ML. Contact tracing to control infectious disease: when enough is enough. Heal 

Care Manag Sci 2007; 10: 341–55. 
83 Chen MI, Ghani AC, Edmunds J. Mind the gap: the role of time between sex with two consecutive partners 

on the transmission dynamics of gonorrhea. Sex Transm Dis 2008; 35: 435–44. 
84 Garnett GP, Swinton J, Brunham RC, Anderson RM. Gonococcal infection, infertility, and population growth: 

II. The influence of heterogeneity in sexual behaviour. IMA J Math Appl Med Biol 1992; 9: 127–44. 
85 Ghani AC, Aral SO. Patterns of sex worker-client contacts and their implications for the persistence of 

sexually transmitted infections. J Inf Dis 2005; 191: S34–41. 
86 Ghani AC, Swinton J, Garnett GP. The role of sexual partnership networks in the epidemiology of gonorrhea. 

Sex Transm Dis 1997; 24: 45–56. 
87 Hazel A, Marino S, Simon C. An anthropologically based model of the impact of asymptomatic cases on the 

spread of Neisseria gonorrhoeae. J R Soc Interface 2015; 12: 20150067. 
88 Hui BB, Ryder N, Su J-Y, et al. Exploring the benefits of molecular testing for gonorrhoea antibiotic 

resistance surveillance in remote settings. PLoS One 2015; 10: e0133202. 
89 McCluskey CC, Roth E, van den Driessche P. Implication of Ariaal sexual mixing on gonorrhea. Am J Hum 

Biol 2005; 17: 293–301. 
90 Turner KME, Garnett GP, Ghani AC, Sterne JAC, Low N. Investigating ethnic inequalities in the incidence of 

sexually transmitted infections: mathematical modelling study. Sex Transm Infect 2004; 80: 379–85. 
91 Edwards R, Kim S, van den Driessche P. A multigroup model for a heterosexually transmitted disease. Math 



 37 

Biosci 2010; 224: 87–94. 
92 Craig AP, Gray RT, Edwards JL, et al. The potential impact of vaccination on the prevalence of gonorrhea. 

Vaccine 2015; 33: 4520–5. 
93 Althouse BM, Hébert-Dufresne L. Epidemic cycles driven by host behaviour. J R Stat Soc Ser B Stat 

Methodol 2014; 11: 20140575. 
94 Boily MC, Anderson RM. Human immunodeficiency virus transmission and the role of other sexually 

transmitted diseases. Measures of association and study design. Sex Transm Dis 1996; 23: 312–32. 
95 Garnett GP, Mertz KJ, Finelli L, Levine WC, St Louis ME. The transmission dynamics of gonorrhoea: 

modelling the reported behaviour of infected patients from Newark, New Jersey. Philos Trans R Soc L B Biol 
Sci 1999; 354: 787–97. 

96 Xiridou M, SOETENS LC, Koedijk FDH, VAN DER Sande MAB, WALLINGA J. Public health measures to 
control the spread of antimicrobial resistance in Neisseria gonorrhoeae in men who have sex with men. 
Epidemiol Infect 2015; 143: 1575–84. 

97 Morin BR, Medina-Rios L, Camacho ET, Castillo-Chavez C. Static behavioral effects on gonorrhea 
transmission dynamics in a MSM population. J Theor Biol 2010; 267: 35–40. 

98 Xiridou M, Lugnér A, de Vries HJC, et al. Cost-effectiveness of dual antimicrobial therapy for gonococcal 
infections among men who have sex with men in the Netherlands. Sex Transm Dis 2016; 43: 542–8. 

99 Hui B, Fairley CK, Chen M, et al. Oral and anal sex are key to sustaining gonorrhoea at endemic levels in 
MSM populations: a mathematical model. Sex Transm Infect 2015; 91: 365–9. 

100 Farley TA, Cohen DA, Elkins W. Asymptomatic sexually transmitted diseases: the case for screening. Prev 
Med 2003; 36: 502–9. 

101 Kent CK, Chaw JK, Wong W, et al. Prevalence of rectal, urethral, and pharyngeal chlamydia and gonorrhea 
detected in 2 clinical settings among men who have sex with men: San Francisco, California, 2003. Clin 
Infect Dis 2005; 41: 67–74. 

102 US Public Health Service. Preexposure Prophylaxis for the Prevention of HIV Infection in the United States. 
US Public Health Service, 2014 https://www.cdc.gov/hiv/pdf/prepguidelines2014.pdf. 

103 Gift TL, Kissinger P, Mohammed H, Leichliter JS, Hogben M, Golden MR. The cost and cost-effectiveness 
of expedited partner therapy compared with standard partner referral for the treatment of chlamydia or 
gonorrhea. Sex Transm Dis 2011; 38: 1067–73. 

104 Tuite AR, Jayaraman GC, Allen VG, Fisman DN. Estimation of the burden of disease and costs of genital 
Chlamydia trachomatis infection in Canada. Sex Transm Dis 2012; 39: 260–7. 

105 White PJ, Ward H, Cassell JA, Mercer CH, Garnett GP. Vicious and virtuous circles in the dynamics of 
infectious disease and the provision of health care: gonorrhea in Britain as an example. J Inf Dis 2005; 192: 
824–36. 

106 Vickerman P, Ndowa F, O’Farrell N, Steen R, Alary M, Delany-Moretlwe S. Using mathematical modelling to 
estimate the impact of periodic presumptive treatment on the transmission of sexually transmitted infections 
and HIV among female sex workers. Sex Transm Infect 2010; 86: 163–8. 

107 Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML. The unexpected impact of a Chlamydia 
trachomatis infection control program on susceptibility to reinfection. J Inf Dis 2005; 192: 1836–44. 

108 Althaus CL, Heijne JCM, Roellin A, Low N. Transmission dynamics of Chlamydia trachomatis affect the 
impact of screening programmes. Epidemics 2010; 2: 123–31. 

109 Boily MC, Lowndes C, Alary M. The impact of HIV epidemic phases on the effectiveness of core group 
interventions: insights from mathematical models. Sex Transm Infect 2002; 78 Suppl 1: i78-90. 

110 Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for 
parameter inference and model selection in dynamical systems. J R Soc Interface 2009; 6: 187–202. 

111 Sullivan PS, Peterson J, Rosenberg ES, et al. Understanding racial HIV/STI disparities in black and white 
men who have sex with men: a multilevel approach. PLoS One 2014; 9: e90514. 

 


