Improving Appropriate Use of Omega-3 Fatty Acids in Primary Care: Success of Online CME

JELENA S. SPYROPOULOS, PHD, DOUGLAS BLEVINS, MD, MARTIN WARTERS, MA, CHSE; Medscape LLC, New York, NY, USA

BACKGROUND

- Dyslipidemia affects more than 100 million American adults.1
- Persistent dyslipidemia in the face of even high-dose statin treatment reveals the need for more intensive management of abnormal lipid parameters, especially for high-risk patients, who may particularly benefit from combinations of lipid-modifying therapies.2
- Clinical trials have demonstrated the effectiveness of omega-3 polyunsaturated fatty acid (FA) eicosapentaenoic acid ethyl ester (EPA) on high-density (HD) lowering and on cardiovascular (CV) risk reduction. However, many clinicians have limited understanding of the effects of EPA and limited experience using EPA to reduce the risk of CV disease.3,4

OBJECTIVE

- To determine if an online continuing medical education (CME) intervention could improve knowledge and competence of cardiologists and primary care physicians (PCPs) related to the role of EPA in management of CV risk in patients with dyslipidemia

METHODS

- The intervention comprised a curriculum of 2 online video-based, roundtable discussion CME activities.5
- The effects of education were assessed via learners completing all 4 pre-post-assessment questions for each activity, using a matched pre-post-assessment design, with participants serving as their own controls.
- For all questions combined, the McNemar’s chi-square test assessed differences from pre to post-assessment. If values are shown in italics, they demonstrate significance. P values <.05 are statistically significant.

RESULTS

- Cardiologists and PCPs also demonstrated significant improvement across learning themes.

CONCLUSION

- Results of our study indicate that both cardiologists and PCPs experienced statistically significant improvements in knowledge and confidence after participating in 2 online CME activities on omega-3 FA therapy in the form of video-based panel discussion with synchronized slides.
- This type of CME intervention has the potential to improve clinical care by implementing EPA preventive treatments to lower TGs in patients with dyslipidemia.
- Finally, the analysis uncovered persistent educational gaps. Learning interventions may improve EPA properties and ability to appropriately incorporate EPA into clinical care, suggesting that additional education may be needed in order to reduce the risk for CV events and improve outcomes for patients with dyslipidemia.

MATCHED LEARNER DATA

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Improvements in Knowledge</th>
<th>PCPs</th>
<th>Cardiologists</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGs</td>
<td>21%</td>
<td>28%</td>
<td>7%</td>
<td>24%</td>
<td>34%</td>
</tr>
<tr>
<td>LDL</td>
<td>57%</td>
<td>64%</td>
<td>7%</td>
<td>67%</td>
<td>74%</td>
</tr>
<tr>
<td>HDL</td>
<td>34%</td>
<td>36%</td>
<td>2%</td>
<td>36%</td>
<td>42%</td>
</tr>
</tbody>
</table>

Matched learner data indicate that:
- Cardiologists: 24% improved their knowledge as a result of participating in the activities while 60% had their knowledge reinforced; 23% were unaffected.
- PCPs: 34% improved their knowledge as a result of participating in the activities while 42% had their knowledge reinforced; 24% were unaffected.

Among only those learners who had their knowledge/competence reinforced or improved, there was a significant 19% relative increase in appropriate use of EPA for cardiologists and a 14% increase in confidence for PCPs.